Answer : The wavelength of an electron is,
![4.39* 10^(-9)m](https://img.qammunity.org/2020/formulas/chemistry/middle-school/jzlk71lf67bwvvxhm6ysd9rssx2zzby7qa.png)
Explanation :
According to de-Broglie, the expression for wavelength is,
![\lambda=(h)/(p)](https://img.qammunity.org/2020/formulas/physics/high-school/g25igv6gk9vc1jx71soq91khyqltz8mo3k.png)
and,
![p=mv](https://img.qammunity.org/2020/formulas/physics/middle-school/lldmrpmkc3i68kifbfb2c4hi3vblitcsch.png)
where,
p = momentum, m = mass, v = velocity
So, the formula will be:
![\lambda=(h)/(mv)](https://img.qammunity.org/2020/formulas/physics/high-school/2ux9ol38f2uin1tqqqpm91aapsytpn91ak.png)
where,
h = Planck's constant =
![6.626* 10^(-34)Js](https://img.qammunity.org/2020/formulas/physics/college/b18kmhhpr3ehzalofa0yct1hdtfjbym27x.png)
= wavelength = ?
m = mass of electron =
![9.31* 10^(-31)kg](https://img.qammunity.org/2020/formulas/chemistry/middle-school/uhrlh38kj52s4z5ua0d2v2k5lz6eq4m2aj.png)
v = velocity =
![1.62* 10^5m/s](https://img.qammunity.org/2020/formulas/chemistry/middle-school/y5duaukfb9j26ne2pcw4y13x3g3ewl9mks.png)
Now we have to calculate the wavelength.
Now put all the given values in the above formula, we get:
![\lambda=(h)/(mv)](https://img.qammunity.org/2020/formulas/physics/high-school/2ux9ol38f2uin1tqqqpm91aapsytpn91ak.png)
![\lambda=(6.626* 10^(-34)Js)/((9.31* 10^(-31)kg)* (1.62* 10^5m/s))](https://img.qammunity.org/2020/formulas/chemistry/middle-school/b3rsn8cbzfzk00kbzqgyqiea5ve775s6xv.png)
![\lambda=4.39* 10^(-9)m](https://img.qammunity.org/2020/formulas/chemistry/middle-school/6u950ae74bbyk8zz5vg5cavec42nblp433.png)
Therefore, the wavelength of an electron is,
![4.39* 10^(-9)m](https://img.qammunity.org/2020/formulas/chemistry/middle-school/jzlk71lf67bwvvxhm6ysd9rssx2zzby7qa.png)