211k views
3 votes
home / study / math / advanced math / advanced math questions and answers / find the solution of ivp for the differential equation (x+2)^2e^y when y(1) =0 y'= dy/dx=(x+2)^2.e^y;... Question: Find the solution of IVP for the differential equation (x+2)^2e^y when y(1) =0 y'= dy/dx=(x+2)^2.... Find the solution of IVP for the differential equation (x+2)^2e^y when y(1) =0 y'= dy/dx=(x+2)^2.e^y; y(1)=0

User Shirry
by
6.3k points

1 Answer

5 votes

Answer:


y=-\ln\left(-((x+2)^3)/(3)+10\right)

Explanation:

Using separation of variables we have
y'=(dy)/(dx)=(x+2)^2e^y \Rightarrow e^(-y)dy=(x+2)^2dx \Rightarrow \int e^(-y)dy=\int(x+2)^2dx \Rightarrow - e^(-y)=((x+2)^3)/(3)+k, using the initial condition
y(1)=0, we obtain
-e^(-0)=((1+2)^3)/(3)+k \Rightarrow k=-e^(-0)-3^2=-1-9=-10 and clearing
y it follows
-y=\ln e^(-y)=\ln \left(-((x+2)^3)/(3)+10\right) \Rightarrow y=-\ln\left(-((x+2)^3)/(3)+10\right).

User ThienSuBS
by
6.2k points