Answer:
The probability is 0.057797
Explanation:
Consider the provided information.
It is given that true percentage of voters who vote for the proposition is 63%,
Let p is probability of success.
According to the binomial distribution:
![P(x;p,n)=^nC_x(p)^x(1-p)^((n-x))](https://img.qammunity.org/2020/formulas/mathematics/college/627cn5pziqvwrwfrveve6q9jfaer7hitnw.png)
Substitute n=7, p=0.63 and x=2 in the above formula.
![P(x;p,n)=^7C_2(0.63)^2(1-0.63)^((7-2))](https://img.qammunity.org/2020/formulas/mathematics/college/5nm04e0x1ytiabbauyctqyp7wpq928wz4h.png)
![P(x;p,n)=(7!)/(2!5!)(0.3969)(0.37)^(5)\\P(x;p,n)=21(0.3969)(0.37)^(5)\\P(x;p,n)=0.0577974947199\\P(x;p,n)\approx0.057797](https://img.qammunity.org/2020/formulas/mathematics/college/q06nzv5bx4nw8hfj8utxgqtc7zlejs2jij.png)
Hence, the probability is 0.057797