Answer: 0.9575465
Explanation:
Let the random variable X is normally distributed with mean
and standard deviation
.
Using the formula ,
, we have the z-value for x= 34
![z=(34-50)/(7)\approx-2.29](https://img.qammunity.org/2020/formulas/mathematics/college/ty8slnm4jxo4f6hmrupwv57sr494a36ifv.png)
For x= 63
![z=(63-50)/(7)\approx1.86](https://img.qammunity.org/2020/formulas/mathematics/college/zbgb9zqepgmpyls1javee1b2cnhgpkzg0j.png)
P-value : P(34<x<63)=P(-2.29<z<1.86)
![=P(z<1.86)-P(z<-2.29)\\\\=0.9685572-(1-P(z<2.29))\\\\1=0.9685572-(1-0.9889893)\\\\=0.9575465](https://img.qammunity.org/2020/formulas/mathematics/college/d7w4vi9yg6pwwxjqddf4l2gxxztejt1bxt.png)
Hence, the required probability = 0.9575465