140k views
4 votes
Evaluate the integral Integral from (5 comma 2 comma 4 )to (7 comma 9 comma negative 3 )y dx plus x dy plus 3 dz by finding parametric equations for the line segment from ​(5 ​,2​,4​) to ​(7 ​,9​,negative 3​) and evaluating the line integral of Fequals yiplusxjplus3k along the segment. Since F is​ conservative, the integral is independent of the path.

User Marandil
by
6.5k points

1 Answer

3 votes


\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\int_((5,2,4))^((7,9,-3))y\,\mathrm dx+x\,\mathrm dy+3\,\mathrm dz

Parameterize the line segment (call it
C) by


\vec r(t)=(1-t)(5\,\vec\imath+2\,\vec\jmath+4\,\vec k)+t(7\,\vec\imath+9\,\vec\jmath-3\,\vec k)


\vec r(t)=(2t+5)\,\vec\imath+(7t+2)\,\vec\jmath+(4-7t)\,\vec k

with
0\le t\le1. Then


\vec r'(t)=2\,\vec\imath+7\,\vec\jmath-7\,\vec k

and the line integral is


\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\int_0^1((7t+2)\,\vec\imath+(2t+5)\,\vec\jmath+3\,\vec k)\cdot\vec r'(t)\,\mathrm dt


=\displaystyle\int_0^1((2t+5)+2(7t+2)-21)\,\mathrm dt


=\displaystyle\int_0^1(28t+18)\,\mathrm dt=\boxed{32}

Alternatively, if we can show that
\vec F is conservative, then we can apply the fundamental theorem of calculus. We need to find
f such that
\\abla f=\vec F, which requires


(\partial f)/(\partial x)=y


(\partial f)/(\partial y)=x


(\partial f)/(\partial z)=3

Integrating both sides of the first equation with respect to
x gives


f(x,y,z)=xy+g(y,z)

Differentiating both sides wrt
y gives


(\partial f)/(\partial y)=x=x+(\partial g)/(\partial y)


\implies(\partial g)/(\partial y)=0\implies g(y,z)=h(z)

Differentiating wrt
z gives


(\partial f)/(\partial z)=3=(\mathrm dh)/(\mathrm dz)


\implies h(z)=3z+C

So we have


f(x,y,z)=xy+3z+C

and
\vec F is conservative. By the FTC, we find


\displaystyle\int_C\vec F\cdot\mathrm d\vec r=f(7,9,-3)-f(5,2,4)=\boxed{32}

User Francesca Nannizzi
by
6.0k points