Answer:
The 95% confidence interval for the population variance is
![\left[0.219, \hspace{0.1cm} 0.807\right]\\\\](https://img.qammunity.org/2020/formulas/mathematics/college/l2wc1xch78zwgwkrj0z9bzduyrur8me28o.png)
The 95% confidence interval for the population mean is
![\left [15.112, \hspace{0.3cm}15.688\right]](https://img.qammunity.org/2020/formulas/mathematics/college/754gzdcm3vvuqct6klt65vdnz8au7gd4in.png)
Explanation:
To solve this problem, a confidence interval of
for the population variance will be calculated.
![$$Sample variance: $S^2=(0.6152)^2$\\Sample size $n=20$\\Confidence level $(1-\alpha)*100\%=95\%$\\$\alpha: \alpha=0.05$\\$\chi^2$ values (for a 95\% confidence and n-1 degree of freedom)\\$\chi^2_{\left (1-(\alpha)/(2);n-1\right )}=\chi^2_((0.975;19))=8.907\\$\chi^2_{\left ((\alpha)/(2);n-1\right )}=\chi^2_((0.025;19))=32.852\\\\](https://img.qammunity.org/2020/formulas/mathematics/college/9hqrsztwkt5va1487ysn30ptbyezkv2ie5.png)
Then, the
confidence interval for the population variance is given by:
Thus, the 95% confidence interval for the population variance is:
![\\\\\left [((19-1)(0.6152)^2)/(32.852), \hspace{0.1cm}((19-1)(0.6152)^2)/(8.907) \right ]=\left[0.219, \hspace{0.1cm} 0.807\right]\\\\](https://img.qammunity.org/2020/formulas/mathematics/college/q3w6ce9ngl5paz41ef05aaufg8z1cifo26.png)
On other hand,
A confidence interval of
for the population mean will be calculated
![$$Sample mean: $\bar X=15.40$\\Sample variance: $S^2=(0.6152)^2$\\Sample size $n=20$\\Confidence level $(1-\alpha)*100\%=95\%$\\$\alpha: \alpha=0.05$\\T values (for a 95\% confidence and n-1 degree of freedom) T_((\alpha/2;n-1))=T_((0.025;19))=2.093\\\\$Then, the (1-\alpha) * 100$\% confidence interval for the population mean is given by:\\\\](https://img.qammunity.org/2020/formulas/mathematics/college/v08qj1fs7cok7ms6o8o70cgeiw67ura7nh.png)
\
Thus, the 95\% confidence interval for the population mean is:
![\\\\\left [15.40 - 2.093\sqrt{((0.6152)^2)/(19)}, \hspace{0.3cm}15.40 + 2.093\sqrt{((0.6152)^2)/(19)} \right ]=\left [15.112, \hspace{0.3cm}15.688\right] \\\\](https://img.qammunity.org/2020/formulas/mathematics/college/k0ouvxoh16ayg7mzxnfz07o5s368bvmz5s.png)