Answer:
![v = 1,582 \ (m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/m6ks6mv5e15kwmz1od1j6sxcvwxaii3ca5.png)
Step-by-step explanation:
We know that for circular motion the centripetal acceleration
is:
![a_c = (v^2)/(r)](https://img.qammunity.org/2020/formulas/physics/high-school/6e9jtqnjicihq3lxkynm5l6dejojz88sup.png)
where v is the speed and r is the radius.
The centripetal acceleration for the astronaut must be the gravitational acceleration due to the gravity, as there are no other force. So
.
The radius of the orbit must be the radius of the Moon, plus the 270 km above the surface
![r = 1.7 * 10^6 \ m + 270 \ km](https://img.qammunity.org/2020/formulas/physics/college/u5ublmf0c8yq7j5ysw5qa70ck1g00schsl.png)
![r = 1.7 * 10^6 \ m + 270 * 10^3 \ m](https://img.qammunity.org/2020/formulas/physics/college/tmtvqfj3wnjf52m7v2n57eyvfza6d0irpa.png)
![r = 1.7 * 10^6 \ m + 0.270 * 10^6 \ m](https://img.qammunity.org/2020/formulas/physics/college/m4n6smhhbebaum6ogvzcwdy8gqf9gnb6zp.png)
![r = 1.97 * 10^6 \ m](https://img.qammunity.org/2020/formulas/physics/college/p6801ozv055am1r8zrfm1k32idzupieeia.png)
We can obtain the speed as:
![v^2 = a_c r](https://img.qammunity.org/2020/formulas/physics/college/aajg7zxlzoan54i91paflb80ac8v4znfv3.png)
![v = √(a_c r)](https://img.qammunity.org/2020/formulas/physics/college/xwpkwbtsbmvryhhm94nhi2ikf7virl0tsx.png)
![v = \sqrt{1.27 (m)/(s^2) * 1.97 * 10^6 \ m}](https://img.qammunity.org/2020/formulas/physics/college/i69hx198umo91d5l182fmf0l99ht6phaoz.png)
![v = \sqrt{ 2.509 \ 10^6 \ (m^2)/(s^2)}](https://img.qammunity.org/2020/formulas/physics/college/iuj9s2n94d0vxujsvqj0tqamh9jw6jd1uq.png)
![v = 1.582 \ 10^3 \ (m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/qsz4fgls8zglablu3vifsbd3xjp4zvs4jg.png)
![v = 1,582 \ (m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/m6ks6mv5e15kwmz1od1j6sxcvwxaii3ca5.png)
And this is the orbital speed.