Answer:
W=0.94J
Step-by-step explanation:
Electrostatic potential energy is the energy that results from the position of a charge in an electric field. Therefore, the work done to move a charge from point 1 to point 2 will be the change in electrostatic potential energy between point 1 and point 2.
This energy is given by:
![U=(K\left |q_1 \right |\left |q_2 \right |)/(r)\\](https://img.qammunity.org/2020/formulas/physics/college/kwc500j7ozxbgem4s9c3jkpqd836yptw55.png)
So, the work done to move the chargue is:
![W=U_1-U_2\\W=(K\left |q_1 \right |\left |q_2 \right |)/(r_1)-(K\left |q_1 \right |\left |q_2 \right |)/(r_2)\\r_1=√(((0.155 m)^2+0 m)^2)=0.115m\\r_2=√(((0.245 m)^2+(0.270 m)^2)=0.365m\\W=K\left |q_1 \right |\left |q_2 \right |((1)/(r_1)-(1)/(r_2))\\W=8.99*10^9(Nm^2)/(c^2)(4.00*10^(-6)C)(4.40*10^(-6)C)((1)/(0.115m)-(1)/(0.365))\\W=0.94J](https://img.qammunity.org/2020/formulas/physics/college/iuns2rw9uzfv30rmvx7ddxyhy44h2v3hai.png)
The work is positive since the potential energy in 1 is greater than 2.