Answer:
the radius of bigger loop = 6 cm
Step-by-step explanation:
given,
two concentric current loops
smaller loop radius = 3.6 cm
]current in smaller loop = 12 A
current in the bigger loop = 20 A
magnetic field at the center of loop = 0
Radius of the bigger loop = ?
![B_t = B_1 + B_2](https://img.qammunity.org/2020/formulas/physics/college/x85fa442836oh4sx2fwyk8s6e08nhjk0eo.png)
![0 = (\mu_0I_1)/(2R_1) +(\mu_0I_2)/(2R_2)](https://img.qammunity.org/2020/formulas/physics/college/dzknm6dxtyvevnyox10wqpyagckh151zwi.png)
now, on solving
![(I_1)/(R_1) = (I_2)/(R_2)](https://img.qammunity.org/2020/formulas/physics/college/azjv5divapwwstcc9nhl9xu2ryvrb5m5q4.png)
![R_2 = I_2(R_1)/(I_1)](https://img.qammunity.org/2020/formulas/physics/college/m67ajhx07ktf8tuzcjhgmb5htjsvb1yf5w.png)
=
![20* (3.6)/(12)](https://img.qammunity.org/2020/formulas/physics/college/numj7f3w9zii9u52aeeitmf6uskln1ys9g.png)
= 6 cm
hence, the radius of bigger loop = 6 cm