Answer:
(4.5, 4.7)
Explanation:
Hi!
Lets call X to the consumption of milk per week among males over age 32. X has a normal distribution with mean μ and standard deviation σ.
![X \sim N(\mu, \sigma)](https://img.qammunity.org/2020/formulas/mathematics/college/ki8onbza3gqft1sjswhj741lcn2rw4w2ik.png)
When you know the population standard deviation σ of X , and the sample mean is
, the variable q has distribution N(0,1):
![q = (\hat X - \mu)/(\sigma) \sim N(0,1)](https://img.qammunity.org/2020/formulas/mathematics/college/hc1jkzwx45ntx2c2wecjjo2droau9rg1jb.png)
Then you have:
![P(-k < q <k ) = P(\hat X -(\sigma)/(√(N) )<\mu<\hat X +(\sigma)/(√(N) ))=C](https://img.qammunity.org/2020/formulas/mathematics/college/lehv3qem7ywtgqf8ln48651i6agrt9jut8.png)
This defines a C - level confidence interval. For each C the value of k is well known. In this case C = 0.98, then k = 2.326
Then the confidence interval is:
![(4.6 - 2.326*(0.8)/(√(710)), 4.6 + 2.326*(0.8)/(√(710)))\\ (4.5, 4.7)](https://img.qammunity.org/2020/formulas/mathematics/college/2d2sznf4h4rqn5sm1u97yz2rgxirbvp6ij.png)