Answer:
Confidence interval = ( 0.7991, 0.8647 )
Explanation:
Sample size = n = 351
number of successes = X = 292
Sample proportion = P =
![(X)/(n)](https://img.qammunity.org/2020/formulas/mathematics/college/asvutct21nau44w1go92axliefitcp9vu1.png)
=
![(292)/(351)](https://img.qammunity.org/2020/formulas/mathematics/college/5ujwhwy0b8ioc44g1u4r2n0lgtwokpybgt.png)
= 0.831908831
confidence interval = 90%
Critical Z value = 1.6449 [by using excel]
Confidence interval = P ± Z
![\sqrt{P((1-P))/(n)}](https://img.qammunity.org/2020/formulas/mathematics/college/ps8f98inujqd3ylrzmkt2q4vdjg7hc6q3o.png)
Where P = Sample proportion
Z = critical value
n = sample size
Confidence interval = 0.831908831 ± 1.6449
![\sqrt{0.831908831((1-0.831908831))/(351)}](https://img.qammunity.org/2020/formulas/mathematics/college/gfnz3rw37oiclwbk0rlhoixteuc8gb3ig7.png)
= 0.831908831 ± 1.6449 × 0.0200
= 0.831908831 ± 0.032898
Lower limit = 0.831908831 - 0.032898 = 0.7991
Upper limit = 0.831908831 + 0.032898 = 0.8647
Confidence interval = ( 0.7991, 0.8647 )