171k views
0 votes
The potential in a region of space due to a charge distribution is given by the expression V = ax2z + bxy − cz2 where a = −3.00 V/m3, b = 6.00 V/m2, and c = 9.00 V/m2. What is the electric field vector at the point (0, −8.00, −8.00) m? Express your answer in vector form

User Kernix
by
6.0k points

1 Answer

7 votes

Answer:


\vec{E} ( (0, -8.00 \ m, - 8.00 \ m) ) = (   48.00 (V)/(m)  ,  0  , - 144.00 (V)/(m)  )

Step-by-step explanation:

We know that the relationship between the electric field
\vec{E}(\vec{r}) and the potential
V(\vec{r}) is given by


\vec{E} ( \vec{r}) = - \vec{\\abla} V(\vec{r})

So, for our potential:


V(r) = a x^2 z + b x y - c z^2

the electric field is :


\vec{E} ( \vec{r}) = - \vec{\\abla} ( a x^2 z + b x y - c z^2 )


\vec{E} ( \vec{r}) = - ( ( \partial )/(\partial x), ( \partial )/(\partial y) , ( \partial )/(\partial z)) ( a x^2 z + b x y - c z^2 )


\vec{E} ( \vec{r}) = - ( ( \partial )/(\partial x) ( a x^2 z + b x y - c z^2 ) , ( \partial )/(\partial y)  ( a x^2 z + b x y - c z^2 ) , ( \partial )/(\partial z) ( a x^2 z + b x y - c z^2 ))


\vec{E} ( \vec{r}) = - ( 2 a x z + b y  , b x  , a x^2 - 2 c z )

This is the our electric field. At vector point


\vec{r} = (0, -8.00 \ m, - 8.00 \ m)


\vec{E} ( (0, -8.00 \ m, - 8.00 \ m) ) = - ( 2 a  * 0 * (-8.00 \ m)   + b (-8.00 \ m)   , b * 0  , a 0^2 - 2 c (-8.00 \ m)  )


\vec{E} ( (0, -8.00 \ m, - 8.00 \ m) ) = - ( 0   - b 8.00 \ m   ,  0  , 0 + 2 c 8.00 \ m  )


\vec{E} ( (0, -8.00 \ m, - 8.00 \ m) ) = (   b 8.00 \ m   ,  0  , - 2 c 8.00 \ m  )

Knowing


b= 6.00 (V)/(m^2)

and


c=9.00 (V)/(m^2)

the electric field is


\vec{E} ( (0, -8.00 \ m, - 8.00 \ m) ) = (   6.00 (V)/(m^2) * 8.00 \ m   ,  0  , - 9.00 (V)/(m^2) * 2* 8.00 \ m  )


\vec{E} ( (0, -8.00 \ m, - 8.00 \ m) ) = (   48.00 (V)/(m)  ,  0  , - 144.00 (V)/(m)  )

User Earizon
by
6.9k points