210k views
3 votes
Express the vector 5u + 2w in the form v = 1i + 2j + 3k if u = [ 5, - 4. 2] and w =[ -4, 3, 5].

1 Answer

4 votes

Answer:
\vec{v}=1(17)\hat{i}+2(7)\hat{j}+3(6.67)\hat{k}

Explanation:

Since we have given that


\vec{u}=5\hat{i}-4\hat{j}+2\hat{k}\\\\and\\\\\vec{w}=}

We need to find the value of


5\vec{u}+2\vec{w} in the form of
\vec{v}=1\hat{i}+2\hat{j}+3\hat{k}

so, it becomes,


5(5\hat{i}-4\hat{j}+2\hat{k})+2(-4\hat{i}+3\hat{j}+5\hat{k})\\\\=25\hat{i}-20\hat{j}+10\hat{k}-8\hat{i}+6\hat{j}+10\hat{k}\\\\=17\hat{i}-14\hat{j}+20\hat{k}

So, in the form of
\vec{v}

So, it becomes,


\vec{v}=1(17)\hat{i}+2(7)\hat{j}+3(6.67)\hat{k}

User Somedirection
by
5.4k points