Answer:
A) P1=2 [bar] , W=-12 [kJ]
B) P1=0.8 [bar] , W=-7.3303 [kJ]
C) P1=0.6077 [bar] , W=-6.4091 [kJ]
Step-by-step explanation:
First, from the problem we know the following information:
V1=0.1 m^3
V2=0.04 m^3
P2=2 bar =200 kPa
The relation PV^n=constant means PV^n is a constant through all the process, so we can derive the initial pressure as:
![P_(1)V^(n) _(1)= P_(2)V^(n) _(2)](https://img.qammunity.org/2020/formulas/physics/college/ow5mgfnn8g0vzm9nbgvhew00324q6o08b4.png)
![P_(1)= (P_(2)V^(n) _(2))/(V^(n) _(1))](https://img.qammunity.org/2020/formulas/physics/college/92fbhnqelpzpuqp6avozfu2cpbr7b8ed6k.png)
a) To the case a) the constant n is equal to 0, we can calculate the initial pressure substituting n=0 in the previous expression, so:
![P_(1)= (P_(2)V^(n) _(2))/(V^(n) _(1))=((200 kPa)(0.04 m^(3))^(0) )/((0.1 m^(3))^(0) )=200 kPa=<strong>2 bar</strong>](https://img.qammunity.org/2020/formulas/physics/college/46f7qkut6g53bw15o7qjsmphf1ikq5jaia.png)
The expression to calculate the work is:
![W=\int\limits^2_1 {P} \, dV](https://img.qammunity.org/2020/formulas/physics/college/5xhsx0n57aasm76jxuo6mztvvibq7kmu6q.png)
If n=0:
![P_(1)V_(1)^0 =P_(2)V_(2)^0 \\P_(1)=P_(2)](https://img.qammunity.org/2020/formulas/physics/college/xdcz47bpyzpertoesrig1loxcl19aqqju7.png)
Then:
![W=\int\limits^2_1 {P} \, dV=P\int\limits^2_1 {} \, dV=P(V_(2)-V_(1))](https://img.qammunity.org/2020/formulas/physics/college/8uleb0vmxk5hi1zvzflcj095zgek2fkj9k.png)
The work is:
![W=P(V_(2)-V_(1))=(200 kPa)(0.04 m^3 -0.1 m^3)=-12 (kPa)(m^3)=<strong>-12kJ</strong>](https://img.qammunity.org/2020/formulas/physics/college/nt8hsw2suvpko09bjkgqmq4urs2o9dlr0r.png)
b) To the case b) the constant n is equal to 1, we can calculate the initial pressure substituting n=1 in the initial expression, so:
![P_(1)= (P_(2)V^(n) _(2))/(V^(n) _(1))=((200 kPa)(0.04 m^(3))^(1) )/((0.1 m^(3))^(1) )=80 kPa=<strong>0.8 bar</strong>](https://img.qammunity.org/2020/formulas/physics/college/cnp2vnf2e55d4hbwn4axje6lkol27yurfl.png)
If n=1 then:
![P_(1)V_(1)^1 =P_(2)V_(2)^1 \\P_(1)V_(1) =P_(2)V_(2)=constant](https://img.qammunity.org/2020/formulas/physics/college/r7c1erjy94v4uarr95gf9x8x8fcjcngsdk.png)
To calculate the work:
[/tex]
![W=(constant)ln((V_(2))/(V_(1) ) )=PVln((V_(2))/(V_(1) ) )](https://img.qammunity.org/2020/formulas/physics/college/720tgipy5ft17izh9rk2oo1yrr80k4vbr3.png)
Substituting:
![W=(80kPa)(0.1 m^3)ln((0.04 m^3)/(0.1m^3 ) )=<strong>-7.3303kJ</strong>](https://img.qammunity.org/2020/formulas/physics/college/vyykc4xemm8oc7b2pn3x93rzlpyrju7l6k.png)
c) To the case c) the constant n is equal to 1.3, we can calculate the initial pressure substituting n=1.3 in the initial expression, so:
![P_(1)= (P_(2)V^(n) _(2))/(V^(n) _(1))=((200 kPa)(0.04 m^(3))^(1.3) )/((0.1 m^(3))^(1.3) )=60.7726 kPa=<strong>0.6077 bar</strong>](https://img.qammunity.org/2020/formulas/physics/college/p17fow4onxtqiar2qof4p4btdqkcp05k80.png)
First:
![PV^n =constant\\P=constant V^(-n)](https://img.qammunity.org/2020/formulas/physics/college/hmk6ftjqwjbajfpgxvt83b7ab5jiqzib49.png)
The work:
![W=\int\limits^2_1 {P} \, dV=\int\limits^2_1 {constant V^(-n)} \, dV\\W=(constant)((V^(-n+1))/(-n+1) )\left \{ {{2} \atop {1}} \right. \\W=(constant)((V_(2)^(-n+1)-V_(1)^(-n+1))/(-n+1) )\\W=(PV^n)((V_(2)^(-n+1)-V_(1)^(-n+1))/(-n+1) )\\W=((P_2V_2-P_1V_1))/(1-n)](https://img.qammunity.org/2020/formulas/physics/college/7s9b4nc96lm7q9m7nsuk1satvis1iqdooj.png)
Substituting:
![W=((P_2V_2-P_1V_1))/(1-n)=((200kPa)(0.04m^3)-(60.7726kPa)(0.1m^3))/(1-1.3)](https://img.qammunity.org/2020/formulas/physics/college/f3sauyejfu9jynbixhmiygs7uzohdbih9m.png)
W=-6.4091 kJ