Answer:
![(16.4,\ 16.6)](https://img.qammunity.org/2020/formulas/mathematics/college/4gnltyr0t4fzcb8jqo3bfip1pirj3irtwg.png)
Explanation:
Given : Sample size : n= 3861
Significance level :
![\alpha=1-0.98=0.02](https://img.qammunity.org/2020/formulas/mathematics/college/w9vg7b0t9cao2ixxpvdy6rzr6snusvzeh0.png)
Critical value for significance level of
:
![z_(\alpha/2)= 2.33](https://img.qammunity.org/2020/formulas/mathematics/college/31uzqsz44xh2q4dz803qcverkw1vzkuxen.png)
Sample mean :
![\overline{x}=16.5](https://img.qammunity.org/2020/formulas/mathematics/college/ed1l05puz5cdd5d5ro0qmyd2t2qyeye1ho.png)
Standard deviation :
![\sigma= 2.5](https://img.qammunity.org/2020/formulas/mathematics/college/sexzt7lflncoucjmab7q7y2xq9u0vasv3f.png)
The formula to find the confidence interval for population mean is given by :-
![\overline{x}\pm z_(\alpha/2)(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/physics/high-school/8ob9lxp74mdevwdfxubejzkzkpzvqay12m.png)
i.e
![16.5\pm (2.33)(2.5)/(√(3861))](https://img.qammunity.org/2020/formulas/mathematics/college/d0u304odnfvnto0sgmpf28ujxey4a5oweh.png)
![=16.5\pm0.0937445500445\\\\\approx16.5\pm0.1=(16.5-0.1,\ 16.5+0.1)=(16.4,\ 16.6)](https://img.qammunity.org/2020/formulas/mathematics/college/icbzcudp8d2z8xrgdz11mknrb0l917y2er.png)
Hence, the 98% confidence interval for the mean usage of electricity :
![(16.4,\ 16.6)](https://img.qammunity.org/2020/formulas/mathematics/college/4gnltyr0t4fzcb8jqo3bfip1pirj3irtwg.png)