Answer: The mean is 566.5 ppm.
The standard deviation is 74.57 ppm.
Explanation:
Let X represents the concentration of carbon dioxide , then we have the table below
X p(x)
360 0.04
470 0.10
540 0.49
650 0.37
The mean for given Probability mass function:-
![E[x]=\sum_(i=1)^(n) x_i p(x_i)](https://img.qammunity.org/2020/formulas/mathematics/college/ylgnm3sdbu6is86z924bjx0yawc9h5kfx6.png)
i.e.
![E[x]=360\cdot 0.04+470\cdot0.10+540\cdot0.49+650\cdot0.37](https://img.qammunity.org/2020/formulas/mathematics/college/eb49gvabe8yei903sw669mqer9k8d1hnw4.png)
![E[x]=566.5](https://img.qammunity.org/2020/formulas/mathematics/college/dntnoerlgd3dx2uv3y8kqa3zdsk5xeu06f.png)
∴ The mean is 566.5 ppm.
![E[x^2]=\sum_(i=1)^(n) x_i^2 p(x_i)\\\\=360^2\cdot 0.04+470^2\cdot0.10+540^2\cdot0.49+650^2\cdot0.37\\\\=326483](https://img.qammunity.org/2020/formulas/mathematics/college/p7zczulddhqkkp35duuv3l1iu7jrj1tiaj.png)
Standard deviation:-
![\sigma=√(E[x^2]-E[x]^2)\\\\=√(326483-566.5^2)\\\\=√(326483-320922.25)\\\\=√(5560.75)=74.5704365013\approx74.57](https://img.qammunity.org/2020/formulas/mathematics/college/6yjnwzqs0antq85731kqxejrm8lijnnlsn.png)
∴ The standard deviation is 74.57 ppm.