Answer with explanation:
Null hypothesis :
![H_0:p=0.25](https://img.qammunity.org/2020/formulas/mathematics/college/b88g0n51t790kt8e61xgbcow2a53yq3d9c.png)
Alternative hypothesis :
![H_a:p\\eq0.25](https://img.qammunity.org/2020/formulas/mathematics/college/a92fhg66ul3gh73pkw5yzjvq2wsaetjl0j.png)
Given : A genetic experiment with peas resulted in one sample of offspring that consisted of 429 green peas and 159 yellow peas.
i.e.
![\hat{p}=(159)/(429)=0.370629370629\approx0.37](https://img.qammunity.org/2020/formulas/mathematics/college/vihnti7kjvu1x0g031oycy3s52h0qcbhsb.png)
For 95% level of confidence, significance level :
![\alpha:1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/college/fer6cspwl6og6tvxo3498wusqiq1v3l7o7.png)
Critical value of z =
![z_(\alpha/2)=1.96](https://img.qammunity.org/2020/formulas/mathematics/high-school/fn1e1isyr7r4ubq2yxfnpgs4mo3eo8m7ik.png)
Confidence interval for population proportion :
![\hat{p}\pm z_(\alpha/2)\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}](https://img.qammunity.org/2020/formulas/mathematics/college/pxj5zva1u6igd7xybc6x9ei113i3mgmyt5.png)
![=0.37\pm(1.96)\sqrt{(0.37(1-0.37))/(429)}\\\\=0.37\pm0.0456876228438\\\\\approx0.37\pm0.05\\\\=(0.37-0.05,0.37+0.05)=(0.32,0.42)](https://img.qammunity.org/2020/formulas/mathematics/college/g3t1j1kcb4ya7kg3zvta8zow4l89ezsudx.png)
Since 0.25 is not contained in the confidence interval , it means is not reasonable that the true proportion is 0.25 (25%).
Thus, the results contradicts the expectations.