Answer:
Step-by-step explanation:
For this problem, we just need to remember conservation of momentum, as there are no external forces in the horizontal direction:
![\vec{p}_i = \vec{p}_f](https://img.qammunity.org/2020/formulas/physics/college/vhxt6hhbt8o8mb9z8yrh3tbwr61l3u38ve.png)
where the suffix i means initial, and the suffix f means final.
The initial momentum will be:
![\vec{p}_i = m_1 \ \vec{v}_(1_i) + m_2 \ \vec{v}_(2_i)](https://img.qammunity.org/2020/formulas/physics/college/8yngozwnufr9l810usvceyfprcil05g7jv.png)
as the second puck is initially at rest:
![\vec{v}_(2_i) = 0](https://img.qammunity.org/2020/formulas/physics/college/4527v1q2mxsj2ykyiexwi563ga475xmhgw.png)
Using the unit vector
pointing in the original line of motion:
![\vec{v}_(1_i) = 6.0 (m)/(s) \hat{i}](https://img.qammunity.org/2020/formulas/physics/college/azoxq65za6wdudqnfyfp697axzt4jmxr68.png)
![\vec{p}_i = 0.70 \ kg \ 6.0 (m)/(s) \ \hat{i} + 0.70 \ kg \ 0](https://img.qammunity.org/2020/formulas/physics/college/nkenuqg6o0eiprjgj01n23dptkchvamm79.png)
![\vec{p}_i = 4.2 \ (kg \ m)/(s) \ \hat{i}](https://img.qammunity.org/2020/formulas/physics/college/nujvrhf9kikdl1m6icqflaim391vffnpn1.png)
So:
![\vec{p}_i = 4.2 \ (kg \ m)/(s) \ \hat{i} = \vec{p}_f](https://img.qammunity.org/2020/formulas/physics/college/q7e2www2ob8ir0jnaog32utd1llr7ji4l1.png)
![\vec{p}_f = 4.2 \ (kg \ m)/(s) \ \hat{i}](https://img.qammunity.org/2020/formulas/physics/college/g64ajvhjcupb5kcprus4cjjolqp6mqo0xl.png)
Knowing the magnitude and directions relative to the x axis, we can find Cartesian representation of the vectors using the formula
![\ \vec{A} = | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )](https://img.qammunity.org/2020/formulas/physics/college/xx9c9xrfa2oilkp7efegml4v2ee3l3i3bl.png)
So, our velocity vectors will be:
![\vec{v}_(1_f) = v_1 \ ( \ cos(30 \°) \ , \ sin (30 \°) \ )](https://img.qammunity.org/2020/formulas/physics/college/snvu8cwes4xh0xvu2mvars3cqskmiub2z0.png)
![\vec{v}_(2_f) = v_2 \ ( \ cos(-60 \°) \ , \ sin (-60 \°) \ )](https://img.qammunity.org/2020/formulas/physics/college/c7w1j1n09wh5cqwv4lstlv616h1iybnfb0.png)
We got
![\vec{p}_f = 0.7 \ kg \ \vec{v}_(1_f) + 0.7 \ kg \ \vec{v}_(2_f)](https://img.qammunity.org/2020/formulas/physics/college/2lpsmbke72ag1toybhc1nel9r6f17z9elo.png)
![4.2 \ (kg \ m)/(s) \ \hat{i} = 0.7 \ kg \ v_1 \ ( \ cos(30 \°) \ , \ sin (30 \°) \ ) + 0.7 \ kg \ v_2 \ ( \ cos(-60 \°) \ , \ sin (-60 \°) \ )](https://img.qammunity.org/2020/formulas/physics/college/zmfr7rmtgja5cwrl3b062p7tb3mxmzwxt7.png)
So, we got the equations:
![4.2 \ (kg \ m)/(s) = 0.7 \ kg \ v_1 \ cos(30 \°) + 0.7 \ kg \ v_2 \ cos(-60 \°)](https://img.qammunity.org/2020/formulas/physics/college/xwocwxtscpv7wza79480m1hpnj1jpua18o.png)
and
.
From the last one, we get:
![0 = 0.7 \ kg \ ( v_1 \ sin(30 \°) + \ v_2 \ sin(-60 \°) )](https://img.qammunity.org/2020/formulas/physics/college/zkfuf4mqdqy1mk469blhblxnnpgpplhgjf.png)
![0 = v_1 \ sin(30 \°) + \ v_2 \ sin(-60 \°)](https://img.qammunity.org/2020/formulas/physics/college/1zvpgt9h0w7cs5inlshikk8i0so7zxc0gz.png)
![v_1 \ sin(30 \°) = - \ v_2 \ sin(-60 \°)](https://img.qammunity.org/2020/formulas/physics/college/v5cpvcn20t7j1321c1f45rvjvbm21u2bb8.png)
![v_1 = \ v_2 \ (sin(60 \°))/( sin(30 \°) )](https://img.qammunity.org/2020/formulas/physics/college/4h1xiysdjoib73qd533pam1g7l1gcsk3nb.png)
and, for the first one:
![4.2 \ (kg \ m)/(s) = 0.7 \ kg \ ( v_1 \ cos(30 \°) + v_2 \ cos(60 \°) )](https://img.qammunity.org/2020/formulas/physics/college/rrxzr3nenmf67z9g4p7ixuz1ps0jr1seqc.png)
![(4.2 \ (kg \ m)/(s))/( 0.7 \ kg) = v_1 \ cos(30 \°) + v_2 \ cos(60 \°)](https://img.qammunity.org/2020/formulas/physics/college/p0eqv61nkutjf0pw3lnbt9dyw3ljg4q5kt.png)
![(4.2 \ (kg \ m)/(s))/( 0.7 \ kg) = v_1 \ cos(30 \°) + v_2 \ cos(60 \°)](https://img.qammunity.org/2020/formulas/physics/college/p0eqv61nkutjf0pw3lnbt9dyw3ljg4q5kt.png)
![6 \ (m)/(s) = (\ v_2 \ (sin(60 \°))/( sin(30 \°) ) ) \ cos(30 \°) + v_2 \ cos(60 \°)](https://img.qammunity.org/2020/formulas/physics/college/bb3urxk2llgnmm9ojz1q6wccxumulr9vsi.png)
![6 \ (m)/(s) = v_2 (\ (sin(60 \°))/( sin(30 \°) ) ) \ cos(30 \°) + cos(60 \°)](https://img.qammunity.org/2020/formulas/physics/college/bml37bwkif3esvmbywbswnlwagv06aq0yb.png)
![6 \ (m)/(s) = v_2 * 2](https://img.qammunity.org/2020/formulas/physics/college/vb26ysxu6wkq78s3blelhklkcaq53vyxrw.png)
so:
![v_2 = 6 \ (m)/(s) / 2 = 3 (m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/g8fp4w6m0pnf9lmgtojiegfx2e709shaid.png)
and
![v_1 = \ 3 (m)/(s) \ (sin(60 \°))/( sin(30 \°) )](https://img.qammunity.org/2020/formulas/physics/college/3twj6tqvwitfxrolrjz9c68uzwksncspnn.png)
![v_1 = \ 5.196 (m)/(s)](https://img.qammunity.org/2020/formulas/physics/college/9co6kagxhvfxw05a7nez0hzn840odykuwh.png)