Answer:
![(20)/(33)](https://img.qammunity.org/2020/formulas/mathematics/high-school/kbfokfz30sa2pl8k7l6sqelq6d89a3fkh6.png)
Explanation:
We are given that
Sophomores=13
Juniors=12
Seniors=8
Male sophomores=5
Female sophomores=6
Male seniors=4
We have to find the probability of randomly selecting a junior or a senior.
Total persons=13+12+8=33
Let A=Seniors
B=Juniors
Probability,P(E)=
![(number\;of\;favorable\;cases)/(total\;number\;of cases)](https://img.qammunity.org/2020/formulas/mathematics/high-school/jjlfmaqaeksm9emnyyobu36xiss8svbbcq.png)
Using the formula of probability
![P(A)=(8)/(33)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ia11mwxdcr7bc2jsc8p9c3qyicvfc9g56s.png)
![P(B)=(12)/(33)](https://img.qammunity.org/2020/formulas/mathematics/high-school/eudxakzb492y83bh54061hwr6dfoncogca.png)
![A\cap B=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/kvdg927fckpl013mo45gkfm1csp95y58e3.png)
![P(A\cap B)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kb8vanz42qxgrchenuidcwup76ij6yfbyx.png)
![P(A\cup B)=P(A)+P(B)-P(A\cap B)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hjvmv4ll3g25188919dtl3ycbphwrvckcc.png)
![P(A\cup B)=(8)/(33)+(12)/(33)](https://img.qammunity.org/2020/formulas/mathematics/high-school/lilqssteyqext34cwjl5tyeqaf9ck2cxbj.png)
![P(A\cup B)=(8+12)/(33)=(20)/(33)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5xqyen8wyal12ci8enj7t9h7u2hxu2zkcv.png)
Hence, the probability of selecting a junior or senior=
![(20)/(33)](https://img.qammunity.org/2020/formulas/mathematics/high-school/kbfokfz30sa2pl8k7l6sqelq6d89a3fkh6.png)