Answer:
The weight of Earth's atmosphere exert is
![516.6*10^(17)\ N](https://img.qammunity.org/2020/formulas/physics/college/akm6pf684kn29peixygox5jmm0irtu01si.png)
Step-by-step explanation:
Given that,
Average pressure
![P=1.01*10^(5)\ Pa](https://img.qammunity.org/2020/formulas/physics/college/kp3xk0g0lptgl27b9uaor9tmysknrdtkii.png)
Radius of earth
![R_(E)=6.38*10^(6)\ m](https://img.qammunity.org/2020/formulas/physics/college/y2sd20dlugqp0r6n4pdr2wa57zyhfzignk.png)
Pressure :
Pressure is equal to the force upon area.
We need to calculate the weight of earth's atmosphere
Using formula of pressure
![F=PA](https://img.qammunity.org/2020/formulas/physics/college/8p9rjxpjwh81q3ifthvadh070o1c84lt1r.png)
![F=P* 4\pi* R_(E)^2](https://img.qammunity.org/2020/formulas/physics/college/6zomb7pqyb1be9fuad427d5uwunqd0ddmb.png)
Where, P = pressure
A = area
Put the value into the formula
![F=1.01*10^(5)*4*\pi*(6.38*10^(6))^2](https://img.qammunity.org/2020/formulas/physics/college/8xcyt1zrmwg08ardxybfu0in2277u9esto.png)
![F=516.6*10^(17)\ N](https://img.qammunity.org/2020/formulas/physics/college/h3lwthwaf36nayrnbn1j0couhwez5a7hx9.png)
Hence, The weight of Earth's atmosphere exert is
![516.6*10^(17)\ N](https://img.qammunity.org/2020/formulas/physics/college/akm6pf684kn29peixygox5jmm0irtu01si.png)