222k views
3 votes
Let
i be the imaginary unit.

What complex number in standard form does the following simplify to:


i^(425)+i^(14)+i^(-14)+i^(44)

Basically you are being asked to find A and B such that the following equality holds for real values A and B:

A+Bi=i^(425)+i^(14)+i^(-14)+i^(44)

You must show all work.
Have fun.

2 Answers

6 votes

Answer:


i - 1

Explanation:

Complex Number System Rules


√(-1) = i \\ -1 = {i}^(2) \\ -i = {i}^(3) \\ 1 = {i}^(4) [Every \: multiple \: of \: four]

The Divisibilty Rule of 4 states that the last two digits of a number must be a multiple of four, so you will have this:


{i}^(425) + {i}^(14) + {i}^(-14) + {i}^(44) \\ \\ i - 1 - 1 + 1 = i - 1

I am joyous to assist you anytime.

User Lakshman Pilaka
by
8.0k points
4 votes


Hey~freckledspots!\\----------------------


We~will~solve~for~i^(425)!


Rule~of~exponent: a^(b + c) = a^ba^c\\Apply:~i^(425)~=~i^(424)i\\ \\Rule~of~exponent: a^(bc) = (a^(b))^c\\Apply: i^(424) = i(i^2)^(212) \\\\Rule~of~imaginary~number: i^2 = -1\\Apply: i(i^2)^(212) = -1^(212)i\\\\Rule~of~exponent~if~n~is~even: -a^n = a^n\\Apply: -1^(212)i = 1^(212)i\\\\Simplify: 1^(212)i = 1i\\Multiply: 1i * 1 = i\\----------------------\\


Now~let's~solve~1^(14)!\\\\Rule~of~exponent: a^(b + c) = a^ba^c\\Apply: i^(14) = (i^2)^7\\\\Rule~of~imaginary~number: i^2 = -1\\Apply: (i^2)^7 = -1^7\\\\Rule~of~exponent~if~n~is~odd: (-a)^n = -a^n\\Apply: -1^7 = -1^7\\\\Simplify: -1^7 = -1\\----------------------\\Now,~we~have: i-1+i^(-14)+i^(44)\\----------------------


Now~lets~solve~i^(-14)\\\\Rule~of~exponent: a^(-b) = (1)/(a^b) \\Apply: i^(-14) = (1)/(i^(14)) \\\\Rule~of~exponent: a^(bc) = (a^b)^c\\Apply: (1)/(i^(14)) = (1)/((i^2)^7)\\ \\Rule~of~imagianry~number: i^2 = -1\\Apply: (1)/((i^2)^7) = (1)/(-1^7) \\\\Simplify: (1)/(-1^7) = (1)/(-1) \\\\Rule~of~fractions: (a)/(-b) = -(a)/(b) \\Apply: (1)/(-1) = -(1)/(1) = -1\\----------------------\\Now,~we~have: i-1-1+i^44\\----------------------


Now~let's~solve~i^(44)!\\\\Rule~of~exponent: a^(bc) = (a^b)^c\\Apply: i^(44) = (i^2)^(22)\\\\Rule~of~imaginary~numbers: i^2 = -1\\Apply: (i^2)^(22) = -1^(22)\\\\Rule~of~exponent~if~n~is~even: (-a)^n = a^n\\Apply: -1^(22) = 1^(22)\\\\Simplify: 1^(22) = 1\\----------------------\\Now,~we~have~i-1-1+1\\----------------------


Now~let's~simplify~the~expression!\\\\= i-1-1+1 \\= 1 + i -2\\= -1+i\\----------------------


Answer:\\\large\boxed{-1+i}\\----------------------


Hope~This~Helped!~Good~Luck!

User Doro
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories