Answer:
The current needed to transmit Power of 4 W is 28.47 A
Solution:
As per the question:
Length of the antenna,
![L_(a) = 1 m](https://img.qammunity.org/2020/formulas/physics/college/r342pjonvdezvvwa19079ya7uu2a7r33hm.png)
Frequency,
![\vartheta = 1.5 MHz = 1.5* 10^(6) Hz](https://img.qammunity.org/2020/formulas/physics/college/kn3xvas59ljetk5ta6nznhe6llv8f7fej0.png)
Power transmitted,
![P_(t) = 4 W](https://img.qammunity.org/2020/formulas/physics/college/pyd4jvd4gg4toutte14sh13e54mf5fueid.png)
Now,
For a monopole antenna:
![\lambda_(a) = (c)/(\vartheta)](https://img.qammunity.org/2020/formulas/physics/college/sw157phr5d785toj5wniypynmukyodjyzu.png)
where
= wavelength transmitted by the antenna
c = speed of light in vacuum
![\lambda_(a) = (3* 10^(8))/(1.5* 10^(6)) = 200 m](https://img.qammunity.org/2020/formulas/physics/college/gstiw20rostc9a0w9nn9mntu8wnsxx4etd.png)
Now,
Since, the value of
>>
thus the monopole is a Hertian monopole.
The resistance is calculated as:
![R = (1)/(2)((dL_(a))/(\lambda_(a)))^(2)* 80\pi^(2)](https://img.qammunity.org/2020/formulas/physics/college/z03jid3zxa8hh1i0pmkmamtono7ny9vy2w.png)
![R = (1)/(2)(\frac{1}{200)^(2)* 80\pi^(2) = 9.869* 10^(- 3) = 9.869 m\Omega]()
![P_(radiated) = P_(t)](https://img.qammunity.org/2020/formulas/physics/college/svtwxmcf7dargzbjs7t79vbzhs7rlv0n37.png)
![P_(radiated) = (R)/(I^(2))](https://img.qammunity.org/2020/formulas/physics/college/vh231ensg1bnvjzxkrbgbrh4yfuh8r3db2.png)
Now, the current I is given by:
![I = \sqrt{(2P_(t))/(R)} = \sqrt{(2* 4)/(9.869* 10^(- 3))} = 28.47 A](https://img.qammunity.org/2020/formulas/physics/college/4t6e2yso550baieqsl8cw17mytk746d88n.png)