Answer:
The ball will take 4.05 seconds to hit the ground.
Explanation:
we have
![h=-16t^(2)+64t+3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wvq3usv4wcvbvf27scxzy10qkdm85et2hy.png)
This is a quadratic equation (vertical parabola) open down
The vertex is a maximum
we know that
The ball hit the ground when h=0
Solve the quadratic equation
For h=0
![-16t^(2)+64t+3=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lkf4y1qtuxm9ghsejnzuh6t6dlh1hzp4xi.png)
The formula to solve a quadratic equation of the form
is equal to
![t=\frac{-b(+/-)\sqrt{b^(2)-4ac}} {2a}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qzdchlfrxy7xj4ju1lbywf754athod40gw.png)
in this problem we have
so
![a=-16\\b=64\\c=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a9p57xmiust9qz8vryn5c73gycsnougtic.png)
substitute in the formula
![t=\frac{-64(+/-)\sqrt{64^(2)-4(-16)(3)}} {2(-16)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qgr74nkej41lpmzflri7g3xd8mn1yqxhrk.png)
![t=\frac{-64(+/-)√(4,288)} {-32}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/52dqc61paa6hzcw9ivmnzhg4aff8dy6wc8.png)
---> the time cannot be a negative number
![t=\frac{64(+)√(4,288)} {32}=4.05\ sec](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7vg9hq5ou4az3tuw8y9mgeljiw9oelcllb.png)
therefore
The ball will take 4.05 seconds to hit the ground.