Answer:
The estimated radius is 2.734*10^(-10) m.
Step-by-step explanation:
If we assume the van der Waals constant b for Xenon divided by Avogadro's number gives the volume of a single Xenon, we have
![V=(b)/(N)=(0.05156 l/mol)/(6.02214076*10x^(23)) =8.56*10^(-26)litres\\](https://img.qammunity.org/2020/formulas/chemistry/college/o4h1wzu0hggtfqed2yx5yfh1q2jhtqm8j9.png)
We can express this volume in other units, more suitable for the size of an atom:
![V=8.56*10^(-26)litres*(1m3)/(10^(3)litres )*((10^(9) nm)/(1m ) )^(3)\\\\V=8.56*10^(-26)litres*(1m3)/(10^(3)litres )*(10^(27) nm3)/(1m3 ) \\\\ V=0.0856 \, nm^(3)](https://img.qammunity.org/2020/formulas/chemistry/college/gh3zzd7v5h1tznc1bumo0ln6jskgznicnp.png)
The volume of the sphere is
![V=(4\pi)/(3)*r^(3)](https://img.qammunity.org/2020/formulas/chemistry/college/8adzl3x8ebo3da9kwgaj9outvde1kp6g4g.png)
Then we can rearrange to clear r
![r=\sqrt[3]{(3V)/(4\pi) }= \sqrt[3]{(3*0.0856nm^(3))/(4\pi) }=\sqrt[3]{0.0204 nm^(3) }=0.2734nm](https://img.qammunity.org/2020/formulas/chemistry/college/n5ow3hwthbb9gc3bc4ad46bwsxm0ulyl8n.png)
The estimated radius is 0.2734 nm. As the problem ask for the radius to be in meters (1 nm = 10^(-9) m), we can multiply it by 10^(-9) and determine that the radius is 2.734*10^(-10) m.