Answer:
- 8 m from both : Constructive
- 11 m and 7 m : Constructive
- 10 m and 8 m : Destructive
- 11 m and 14 m : In between.
- 20 m and 12 m : Constructive
- 13 m and 19 m : Destructive
- 19 m and 14 m : In between.
Step-by-step explanation:
Equation of the wave
We know that the amplitude of a wave starting at
measured at position
at time t is
![y(\vec{x},t) = A sin ( \vec{k} (\vec{x}-\vec{x}_0) - \omega t + \phi)](https://img.qammunity.org/2020/formulas/physics/college/s17aja9f3j7kwt7szbhpmjy76v7sjgbfwh.png)
where
is the wavevector, ω the angular frequency, and φ the phase angle.
If we measure for a time
we get
![y(x,t_0) = A sin ( k (x-x_0) - \omega t_0 + \phi)](https://img.qammunity.org/2020/formulas/physics/college/p68zqwfhezzs2u9dkwp0kuak9edn5vhxgp.png)
Now, we can use:
![\Theta = - \omega t_0 + \phi](https://img.qammunity.org/2020/formulas/physics/college/w1f497y4qpdxaygb9dq5r0ipmdmitys4f6.png)
![y(x,t_0) = A sin ( \vec{k} (\vec{x}-\vec{x}_0) + \Theta )](https://img.qammunity.org/2020/formulas/physics/college/fjw18ng07tmk9bjjm92o6bgnyyn7k0uvth.png)
Finally, we can write this in term of the distance d, as
is parallel to the displacement vector for a sound wave:
![\vec{k} (\vec{x}-\vec{x}_0) = k |\vec{x}-\vec{x}_0| = k d](https://img.qammunity.org/2020/formulas/physics/college/llrui3ju62ksk2hupgql20uveaj9gvrdrp.png)
where k is the wavenumber
![y(d,t_0) = A sin ( k d + \Theta )](https://img.qammunity.org/2020/formulas/physics/college/quoba4yy5ssi4hre6ubgm9sjmt01vdlrlf.png)
this is the amplitude of a sound wave measured at a distance d at time
![t_0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2elw5rs2bwuly2zhz2e6cvvc5ffbo68du3.png)
Interference
Measuring two identical waves at the same time, one starting at distance d and the other at distance d', the amplitude measured is:
![Amp = y(d,t_0) + y(d',t_0)](https://img.qammunity.org/2020/formulas/physics/college/i348q3g0o2znjalex3ecb24cxued385tsa.png)
![Amp = A \ sin ( k d + \Theta ) + A \ sin ( k d' + \Theta )](https://img.qammunity.org/2020/formulas/physics/college/xzppf2nr7nkjh9geskv62xnzia9zi6xtl1.png)
Constructive interference
We get constructive interference when both sines equals one, or minus one, so, we need a phase difference of
, where n is an integer :
![k d + \Theta = k d' + \Theta + 2 \ n \ \pi](https://img.qammunity.org/2020/formulas/physics/college/pui0y1jpqb5dqx27guwn8ayevsrvvboxv3.png)
![k d - k d'= 2 \ n \ \pi](https://img.qammunity.org/2020/formulas/physics/college/zud0n4bcuubyo38atury84wack7nlficee.png)
![k (d - d')= 2 \ n \ \pi](https://img.qammunity.org/2020/formulas/physics/college/36m71i9x9yxp10yl6hgbxpkxkd75qgon5m.png)
![(d - d') = (2 \ n \ \pi)/(k)](https://img.qammunity.org/2020/formulas/physics/college/kddjglull3pxoj1m6rxytkrp0wli2o5un8.png)
as the wavenumber is
![k = (2\pi)/(\lambda)](https://img.qammunity.org/2020/formulas/physics/college/lm258qpglxrsw5mjyx7ppkvpcamae6fiik.png)
where
is the wavelength,
![(d - d') = ( \lambda \ 2 \ n \pi)/(2 \pi)](https://img.qammunity.org/2020/formulas/physics/college/guqw7xuunwo3x9n03xby835r5hzuv88d91.png)
![(d - d') = n \lambda](https://img.qammunity.org/2020/formulas/physics/college/ckxgqiwn3cyzs03qt46tlxd94yyjv2mt43.png)
so, the difference between the distances must be a multiple of the wavelength to obtain constructive interference.
Destructive interference
We get destructive interference when one sin equals one, and the other minus one, so, we need a phase difference of
, where n is an integer
![k d + \Theta = k d' + \Theta + (2 \ n + 1) \ \pi](https://img.qammunity.org/2020/formulas/physics/college/gfr8t09pvxkqm8f377xogek8m56m9obyf9.png)
![k d - k d'= (2 \ n + 1) \ \pi](https://img.qammunity.org/2020/formulas/physics/college/u05em1gp0m9jft8nvc7r3cny6kx07od76n.png)
![k (d - d')= (2 \ n + 1) \ \pi](https://img.qammunity.org/2020/formulas/physics/college/dgahhu9re0n9s550mq271neygmt02uy14s.png)
![(d - d') = ((2 \ n + 1) \ \pi)/(k)](https://img.qammunity.org/2020/formulas/physics/college/pp7jiqkk5kkm2f2iy2lgqjtgyff7a6szv6.png)
![(d - d') = ( \lambda (2 \ n + 1) \ \pi)/(2 \pi)](https://img.qammunity.org/2020/formulas/physics/college/jo5xq6vieip1oeo51izqfzactfs61l3ce1.png)
![(d - d') = (n + (1)/(2)) \lambda](https://img.qammunity.org/2020/formulas/physics/college/badap9heudwtjopq9nc4cnq6o8bbzp08gm.png)
Problem
Knowing that
![\lambda = 4 \ m](https://img.qammunity.org/2020/formulas/physics/college/gvec8cs6z65vuvo417kgz0xsbusngm30id.png)
so, for the first
8 m from both :
![d - d ' = 8 \ m - 8 \ m = 0 \ \lambda](https://img.qammunity.org/2020/formulas/physics/college/jvbmi4a1isdjnni9cao13ij3wh2ksflsqd.png)
Constructive
11 m and 7 m:
![d - d ' = 11 \ m - 7 \ m = n \ \lambda](https://img.qammunity.org/2020/formulas/physics/college/ovn85y5iz7lictt54ya9mu0hu4fw9qctl5.png)
![4 \ m = 1 * 4 \ m](https://img.qammunity.org/2020/formulas/physics/college/gpwpt27z7nk36ewzg1765yi5w9heplinuz.png)
Constructive
10 m and 8 m
![d - d ' = 10 \ m - 8 \ m = n \ \lambda](https://img.qammunity.org/2020/formulas/physics/college/x1sd834nrrc3wcz4u362ee0nxjzm84cnoq.png)
![2 \ m = (1)/(2) * 4 \ m](https://img.qammunity.org/2020/formulas/physics/college/nf2b0w15afai2xapexnhr5ojb8ne7hirf3.png)
Destructive
11 m and 14 m
![d - d ' = 14 \ m - 11 \ m = n \ \lambda](https://img.qammunity.org/2020/formulas/physics/college/ghqex4sbfgd77bbp6rrab0n47w5iw6h6z4.png)
![( d - d ' )/(\lambda) = ( 3 \ m )/(4 \ m) = (3)/(4)](https://img.qammunity.org/2020/formulas/physics/college/mym5gyzbcp66qglgqhz0vlb7py8ylgykcz.png)
In between.
20 m and 12 m
![d - d ' = 20 \ m - 12 \ m = n \ \lambda](https://img.qammunity.org/2020/formulas/physics/college/p0x4xm2lymv6enasbkqbv7z9yczqf40nc4.png)
![( d - d ' )/(\lambda) = ( 8 \ m )/(4 \ m) = 2](https://img.qammunity.org/2020/formulas/physics/college/nwea53b6dss80xgvwhx7pylj6m9r1s8tyy.png)
Constructive
13 m and 19 m
![d - d ' = 19 \ m - 13 \ m = n \ \lambda](https://img.qammunity.org/2020/formulas/physics/college/wgwmw09aptie4dwmusaxmv3tzec1h93c6n.png)
![( d - d ' )/(\lambda) = ( 6 \ m )/(4 \ m) = 1 + (1)/(2)](https://img.qammunity.org/2020/formulas/physics/college/cyikviv26bfx8s8yr8jq5x1p4ito5l6r2w.png)
Destructive.
14 m and 19 m
![d - d ' = 19 \ m - 14 \ m = n \ \lambda](https://img.qammunity.org/2020/formulas/physics/college/vr20t9bk6w4ixxs1vlzgg9bbh37o6w0ktk.png)
![( d - d ' )/(\lambda) = ( 5 \ m )/(4 \ m) = 1 + (1)/(4)](https://img.qammunity.org/2020/formulas/physics/college/wcsleqg0tq40or51ux0c636x52nlu83v5h.png)
In between.