Answer:
![(x-5)^2 + (y+4)^2 = 10^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7ae1pditmlpf5tz9bijqb2au2knl0c7c7s.png)
Explanation:
We need to find the equation of the circle. First, the formula:
![(x-h)^2 + (y-k)^2 = r^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4eirzo410e5djazi04h0efdsewkok5jdnt.png)
Where (h,k) is the center and r is the radius
The center is (5,-4), so we can say:
![(x-5)^2 + (y+4)^2 = r^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7utgt81yulhkoejy5qke9q8g7y5ffb3dd8.png)
Now, to find the radius, we can use the distance formula to find distance between (5,4) and (-3,2).
The distance formula is
![√((y_2-y_1)^2 + (x_2-x_1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9wrulbxcstwqsjzu3b77egyvbuo7kp1xyq.png)
Where
x_1 = 5
x_2 = -3
y_1 = 4
y_2 = 2
Plugging in, we get:
![√((2+4)^2 + (-3-5)^2) \\=√(6^2 + 8^2)\\ =√(100) \\=10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9tps7yn9nhtbjebhr61or7kkfsch2xmknr.png)
Hence, the radius is 10 and we can write the equation of circle as:
![(x-5)^2 + (y+4)^2 = 10^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7ae1pditmlpf5tz9bijqb2au2knl0c7c7s.png)