Answer: The simplified value of the given expression will be
![(x-3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/utlhsrv4ftb1jem3dd60x2mddwurp8on4i.png)
Explanation:
The expression of the given statement becomes:
![(x^2-15x+36)/(5x-60)](https://img.qammunity.org/2020/formulas/mathematics/college/mcgpt2bki2mmzsexxvjsaskz9jqnytewet.png)
To solve the above expression, we need to factorize the quadratic equation by middle term splitting:
![\Rightarrow (x^2-15x+36)/(5x-60)=(x^2-12x-3x+36)/(5(x-12))\\\\\Rightarrow (x^2-12x-3x+36)/(5(x-12))=(x(x-12)-3(x-12))/(5(x-12))\\\\\Rightarrow (x(x-12)-3(x-12))/(5(x-12))=((x-3)(x-12))/(5(x-12))](https://img.qammunity.org/2020/formulas/mathematics/college/y9pnaulvnmoyx5703m35628wxt6ldeonnx.png)
Omitting out the factor '(x - 12)' from denominator and numerator, we get:
![\Rightarrow ((x-3)(x-12))/(5(x-12))=(x-3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/3gib6w3bxeo71uw6nu62dnhhek0dddd1ch.png)
Hence, the simplified value of the given expression will be
![(x-3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/utlhsrv4ftb1jem3dd60x2mddwurp8on4i.png)