Answer: 0.9545
Explanation:
Given : Population mean :
![x'=400\ N](https://img.qammunity.org/2020/formulas/mathematics/college/xf1ayved1ezwe3u5jcc9ak18c5ulryolxe.png)
Standard deviation :
![\sigma=25\ N](https://img.qammunity.org/2020/formulas/mathematics/college/xhj2huy3wfnn9qc5x7gjmu46vv4h9e0c2a.png)
Sample size : n=25
Test statistic :
![z=\frac{\overline{x}-x'}{(\sigma)/(√(n))}](https://img.qammunity.org/2020/formulas/mathematics/college/y8tuc5e1ynwvp881d1q2tfouz6k39xcbhq.png)
For
, we have
![z=(390-400)/((25)/(√(25)))=-2](https://img.qammunity.org/2020/formulas/mathematics/college/z0t4k4wlsw9514yu6jfc7m72yn9sa9smv1.png)
For
, we have
![z=(410-400)/((25)/(√(25)))=2](https://img.qammunity.org/2020/formulas/mathematics/college/povc4t6432uiidfwopu79yn1ktynhkr0da.png)
Now, by using the standard normal distribution table for z , we have
![\text{P-value=}P(-2<z<-2)=1-2(P\geq2)\\\\=1-2(1-P(z<2))\\\\=1-2(1-0.9772498)=0.9544996\approx0.9545](https://img.qammunity.org/2020/formulas/mathematics/college/y7hp40j8mr6f0lkbyn5tnyrk0fz74o4s4f.png)
Hence, probability that this sampling will have a mean value between 390 and 410 = 0.9545