Step-by-step explanation:
Given that,
She walks in east,
Speed = 0.80 m/s
Time = 4.0 min
In north,
Speed = 0.50 m/s
Time = 5.5 min
In west,
Speed = 1.1 m/s
Time = 2.8 min
(a). We need to calculate the unit-vector velocities for each of the legs of her journey.
The velocity of her in east
![\vec{v_(1)}=0.80\ \hat{x}\ m/s](https://img.qammunity.org/2020/formulas/physics/college/z4z38slexj1xcqr26gj7uccghjc3o0tx0g.png)
![\vec{v_(2)}=0.50\ \hat{y}\ m/s](https://img.qammunity.org/2020/formulas/physics/college/diy2zk2z5gom0c8488agtit1t0nt4c8shj.png)
![\vec{v_(3)}=1.1\ \hat{-x}\ m/s](https://img.qammunity.org/2020/formulas/physics/college/me333yko89tb6r7s82yngfyllobo44up05.png)
(b). We need to calculate the unit-vector displacements for each of the legs of her journey
Using formula of displacement
![\vec{d_(1)}=v_(1)* t_(1)](https://img.qammunity.org/2020/formulas/physics/college/j6mk5dbmtmtyee08ofg6nhbfup3u0vko36.png)
In east ,
![\vec{d_(1)}=0.80*4.0*60](https://img.qammunity.org/2020/formulas/physics/college/pue8lg6m4o3tp9yfaekandlr41s0xqchss.png)
![\vec{d_(1)}=192\ \hat{x}\ m](https://img.qammunity.org/2020/formulas/physics/college/nns774nal7ioqcve84nixq5yscc66mob1z.png)
In north,
![\vec{d_(2)}=0.50*5.5*60](https://img.qammunity.org/2020/formulas/physics/college/nuuk4oqv991zecrvglt4wjt1g175kcabab.png)
![\vec{d_(2)}=165\ \hat{y}\ m](https://img.qammunity.org/2020/formulas/physics/college/k1x8ep3ur8kc9efznx63qfik7o2q5lq4a2.png)
In west,
![\vec{d_(3)}=1.1*2.8*60](https://img.qammunity.org/2020/formulas/physics/college/ikwrvn1xdgbbyuevf0p5gcxy49wn0dhu52.png)
![\vec{d_(3)}=184.8\ \hat{-x}\ m](https://img.qammunity.org/2020/formulas/physics/college/pg6yr6bpk3nyk57c4xuz9t5nq2c457xbmk.png)
(c). We need to calculate the net displacement from the postal truck after her journey is complete
![\vec{d}=\vec{d_(1)}+\vec{d_(2)}+\vec{d_(3)}](https://img.qammunity.org/2020/formulas/physics/college/za4z65av0u4itzkzwdw3uok9hvpdyhn59f.png)
Put the value in the formula
![\vec{d}=192\hat{x}+165\hat{y}+184.8\hat{-x}](https://img.qammunity.org/2020/formulas/physics/college/1k4kgvmqhej02tgmpphy4gd29c766l90o7.png)
![\vec{d}=7.2\hat{x}+165\hat{y}](https://img.qammunity.org/2020/formulas/physics/college/rzx1sksphqp9yzhri5ptum8kfdnn3y5588.png)
We need to calculate the magnitude of the displacement
![d=√((7.2)^2+(165)^2)](https://img.qammunity.org/2020/formulas/physics/college/azvzi1qg2el15cxqn9wco5em1egvftp1uf.png)
![d=165.16\ m](https://img.qammunity.org/2020/formulas/physics/college/6aoe6wqr3cfo1bvgln9nqvb9ojrp55qq5j.png)
The magnitude of the displacement is 165.16 m.
Hence, This is the required solution.