Answer:
Step-by-step explanation:
Part a)
For a position of point inside the inner shell we can use Gauss law as
![\int E. dA = (q)/(\epsilon_0)](https://img.qammunity.org/2020/formulas/physics/college/iamj44axpfq9x3d1msg7utuen4vr93blas.png)
now here we know that enclosed charge in the inner shell is ZERO
so we have
![\int E. dA = 0](https://img.qammunity.org/2020/formulas/physics/college/47y2216k81n336shzmmunc8eaxoan3fofa.png)
![E = 0](https://img.qammunity.org/2020/formulas/physics/college/4k4kmt8z4nhpg79wgha7u02s76gyj5dias.png)
Now for the position between two shells
![r_a< r< r_b](https://img.qammunity.org/2020/formulas/physics/college/w44bhqha8weup58u8bvuphcbul635idbyi.png)
again by Gauss law
![\int E. dA = (q)/(\epsilon_0)](https://img.qammunity.org/2020/formulas/physics/college/iamj44axpfq9x3d1msg7utuen4vr93blas.png)
now here we know that enclosed charge between two shells is given as
![q = q_a](https://img.qammunity.org/2020/formulas/physics/college/vyvd3t1h1gg4rmvwoqdx9c23s87c2oh0r1.png)
so we have
![\int E. dA = (q_a)/(\epsilon_0)](https://img.qammunity.org/2020/formulas/physics/college/hqk4b4ruwhrdmzsz90ev2h4povqcr9g1bz.png)
![E = (q_a)/(4\pi \epsilon_0 r^2)](https://img.qammunity.org/2020/formulas/physics/college/571xim6nsoazdctmdxy23nunwro85pe0m6.png)
Now for position outside the shell we will have
![r > r_b](https://img.qammunity.org/2020/formulas/physics/college/1d0npqxv4144wlel0ww5j1rysvhfo45gxy.png)
again by Gauss law
![\int E. dA = (q)/(\epsilon_0)](https://img.qammunity.org/2020/formulas/physics/college/iamj44axpfq9x3d1msg7utuen4vr93blas.png)
now here we know that enclosed charge given as
![q = q_a + q_b](https://img.qammunity.org/2020/formulas/physics/college/g3smvs0uwvvb2dak4tcyjcj1xuxgjkohid.png)
so we have
![\int E. dA = (q_a + q_b)/(\epsilon_0)](https://img.qammunity.org/2020/formulas/physics/college/i2z8o0rl43mbd5psdy118e06tmjnn7kpf6.png)
![E = (q_a + q_b)/(4\pi \epsilon_0 r^2)](https://img.qammunity.org/2020/formulas/physics/college/lw3yyqyrubifcdo7b1gueqt6w1sd2zgfog.png)
Part b)
If outside the shell net electric field is zero
then we can say
![q_a + q_b = 0](https://img.qammunity.org/2020/formulas/physics/college/q4o5z2bkzzvqcrqkjired3d78cq399a5he.png)
![q_a = 6 nC](https://img.qammunity.org/2020/formulas/physics/college/z21vfg5cjx7qmi08lf7tcuyftsaqnxk9x9.png)
![q_b = - 6nC](https://img.qammunity.org/2020/formulas/physics/college/5m2lb7z2rxkhxa4i94s284wxsy6irgbxqv.png)
Part c)