Answer:
Part 1)
![(f+g)(x)=7x+11](https://img.qammunity.org/2020/formulas/mathematics/middle-school/obv8amx6rn0l3l2au94t8ln8rjkho7crkt.png)
Part 2)
![(f-g)(x)=x-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/icm2z62sxgonocz814s85sche24jeu0gpj.png)
Part 3)
![(f/g)(x)=((4x+4))/((3x+7))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i6wrp3jp4ak43dkndzoyl98390jgig0fxh.png)
Part 4) In interval notation the domain is (-∞,-7/3) ∪ (-7/3,∞)
Part 5)
![(f o g) (x)=12x+32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x25s8lmjl8ixnaxa2t9rzt5zs2tjmjdruq.png)
Explanation:
we have
![f(x)=4x+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v70uj6ghcmpqwtd995svs52bbxs0s1k0sk.png)
![g(x)=3x+7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zi4nozdnsl0f1nodr06uy3wcdwkjhls9v2.png)
Part 1) Find (f+g)(x)
we know that
![(f+g)(x)=f(x)+g(x)](https://img.qammunity.org/2020/formulas/mathematics/college/4ywqyvyqzo5efemzw8p7ju1572v7kxl9ul.png)
substitute the given functions
![(f+g)(x)=(4x+4)+(3x+7)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c4lb6guvmgju16ofnvbuxnwxr44s2j20zd.png)
Combine like terms
![(f+g)(x)=7x+11](https://img.qammunity.org/2020/formulas/mathematics/middle-school/obv8amx6rn0l3l2au94t8ln8rjkho7crkt.png)
Part 2) Find (f-g)(x)
we know that
![(f-g)(x)=f(x)-g(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/8cuzgwvem8zeohz7vcsv3l0z16dzjgq7gf.png)
substitute the given functions
![(f-g)(x)=(4x+4)-(3x+7)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j0t9wtqe46eot65zm42h9w3cffm67ggnde.png)
![(f-g)(x)=4x+4-3x-7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lydbn40j3wl0qeu097zospuad46vm8ketr.png)
Combine like terms
![(f-g)(x)=x-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/icm2z62sxgonocz814s85sche24jeu0gpj.png)
Part 3) Find (f/g)(x)
we know that
![(f/g)(x)=(f(x))/(g(x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4hxlvjmi3t8bkhg8ontswotzqz5mh8fqhv.png)
substitute the given functions
![(f/g)(x)=((4x+4))/((3x+7))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i6wrp3jp4ak43dkndzoyl98390jgig0fxh.png)
Part 4) What the domain for the answer in question 3
we have
![(f/g)(x)=((4x+4))/((3x+7))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i6wrp3jp4ak43dkndzoyl98390jgig0fxh.png)
we know that
The denominator of the quotient cannot be equal to zero
so
![3x+7=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/94x1ok94qtsr7rx2l1cnpa0v3b8aemfqvl.png)
![3x=-7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ciesbdyr21hcty5m4b8metbtbexs4cwoev.png)
![x=-(7)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m8o4nezoqm0ihz0ebo6b0jl5n8ze3cqx7v.png)
The domain is all real numbers except the number x=-7/3
In interval notation the domain is (-∞,-7/3) ∪ (-7/3,∞)
Part 5) Find (f o g) (x)
we know that
![(f o g) (x)=f(g(x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a8kb3pfl0sz5huqbug4sbbuh7st3la82ec.png)
substitute
![f(g(x))=4(3x+7)+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r1we33k3mg5jno6z6uu9p2mk8uvjaajti3.png)
![f(g(x))=12x+28+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6h4kro6229n02733oke34x56y4ldoi82l3.png)
![f(g(x))=12x+32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uda61dojrov2mqbb1i6831tbme2zij1mrm.png)
therefore
![(f o g) (x)=12x+32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x25s8lmjl8ixnaxa2t9rzt5zs2tjmjdruq.png)