Answer:
![a=(v_0^2)/(2(d-v_0t))](https://img.qammunity.org/2020/formulas/physics/college/baxft9ak59durwzks6m948it63d5nur43w.png)
Step-by-step explanation:
Given
Velocity of car is
![v_0](https://img.qammunity.org/2020/formulas/physics/high-school/lf5qdpqen4citmsxuem9hhcjcl08zkznft.png)
distance between car and can is d
reaction time is t
Distance traveled in reaction time
let say
![d_0](https://img.qammunity.org/2020/formulas/physics/high-school/gb5hkrm9olti8nvpgi1fq38gk8vdxpj5hb.png)
![d_0=v_0t](https://img.qammunity.org/2020/formulas/physics/college/h2zjpww0f7cd3ufdju40yxe3xqv0ofeyic.png)
Remaining distance
![=d-d_0](https://img.qammunity.org/2020/formulas/physics/college/1y9ufrb50a0jlcdz36nab8sk2i01qqbqw3.png)
Now final velocity of car will be zero after applying brakes
Using equation of motion
![v^2-u^2=2as](https://img.qammunity.org/2020/formulas/physics/middle-school/kzr98dbu2wfj2ipzjwf8lasb185fsfra2y.png)
![0-v_0^2=2* (-a)* (d-d_0)](https://img.qammunity.org/2020/formulas/physics/college/7mjwkp59vrdne25q8wrfd9d1tefc2im9y7.png)
![a=(v_0^2)/(2(d-v_0t))](https://img.qammunity.org/2020/formulas/physics/college/baxft9ak59durwzks6m948it63d5nur43w.png)