Answer:
various parts have been answered
Step-by-step explanation:
Inverse square for light is
![I_1r_1^2=I_2r_2^2](https://img.qammunity.org/2020/formulas/physics/high-school/7tb0xtmk5misjp6tel6ke0vbr4drtlhgkf.png)
initial distance from sun to earth is
![r_1=150*10^6](https://img.qammunity.org/2020/formulas/physics/high-school/pfggq6dhw6mu33yq0nn6g8rx9mmvyhgdci.png)
and intensity or apparent brightness of sun is
![I_1=1300\ W/m^2](https://img.qammunity.org/2020/formulas/physics/high-school/euu5upee33vha71vh60r7pi5g6aou91xt9.png)
a)
If distance from sun to earth is
![r_2=r_1/2=(150*10^6)/(2)](https://img.qammunity.org/2020/formulas/physics/high-school/1drwyu9mmc7hyb3agcrqnyj8chv1hvfz50.png)
then apparent brightness is
![I_2=(I_1r_1^2)/(r_2^2)=(1300* r_1^2)/((r_1/2)^2)=5200](https://img.qammunity.org/2020/formulas/physics/high-school/zl33tberkljrbszuw9l2jg5er2gaxmmqy8.png)
b)
If distance from sun to earth is
![r_2=2r_1](https://img.qammunity.org/2020/formulas/physics/high-school/kvvnm2fs8t32eojbomdzuur5lvqtp8l1vd.png)
then apparent brightness is
![I_2=(I_1r_1^2)/(r_2^2)=(1300* r_1^2)/((2r_1)^2)=325\,W/m^2](https://img.qammunity.org/2020/formulas/physics/high-school/otudtreuxg2r8xr6ahxe9ck56eblg8pw1j.png)
c)
If distance from sun to earth is
![r_2=7r_1](https://img.qammunity.org/2020/formulas/physics/high-school/t1wofycpxlzz4dwbzinawbaa3cqud5tal0.png)
then apparent brightness is
![I_2=(I_1r_1^2)/(r_2^2)=(1300* r_1^2)/((7r_1)^2)=26.5\,W/m^2](https://img.qammunity.org/2020/formulas/physics/high-school/vxmzljs3l9ec5hwpgw6e5l0g5xjwg3ac4g.png)