Answer:
![V_(toy)=85mL](https://img.qammunity.org/2020/formulas/physics/college/v2vu02h05v9r9an0pfvxmqh8hyxiyl2e49.png)
ρ=
![404.706kg/m^3](https://img.qammunity.org/2020/formulas/physics/college/sgn4p51c3srufkoxl0oz8vb3xooo4agm8s.png)
Step-by-step explanation:
We know that density is equal to the mass divided of its volume
ρ
![=(m)/(V)](https://img.qammunity.org/2020/formulas/physics/college/6i88ha6mqxcdvzhl4wr786nxui8157st1l.png)
According to the Archimedes Principle the volume of displaced fluid is equivalent to the volume of the immersed object.
![E=mg](https://img.qammunity.org/2020/formulas/physics/college/hlyu650h4i0umiaybi6evckwigfxe3afzk.png)
E=ρ
![*V_(immersed)*g](https://img.qammunity.org/2020/formulas/physics/college/fpbzxrqf1q4ulcxhsgvvczg7utxc6xuhq3.png)
![V_(immersed)=61.3mL-26.9mL=34.4mL=3.44x10^(-5)m^3](https://img.qammunity.org/2020/formulas/physics/college/jvr0j9hw4we5grikka94qa7vcwlo5uam9a.png)
![E=(1000kg/m^3)(3.44x10^(-5) m^3)(9.81m/s^2)=0.3374N](https://img.qammunity.org/2020/formulas/physics/college/7p0n0nuexzl6cefbnwinb7pdo4ob0len96.png)
![E=W_(object)=m*g](https://img.qammunity.org/2020/formulas/physics/college/t47aqcgivp40gmib6odq5qbb7qkrm97vmj.png)
![m_(object)=(E)/(g)=(0.3374N)/(9.81m/s^2)=0.0344kg](https://img.qammunity.org/2020/formulas/physics/college/63505zmh9ubm7ieiqmsfgb5zqd3axf0pfd.png)
![V_(object)=(7.23cm)(5.20cm)(2.25cm)=85cm^3=85mL=8.5x10^(-5)m^3](https://img.qammunity.org/2020/formulas/physics/college/kz3g2rxf7rgxcuwx20xrw737hvqnsudilq.png)
Now, we can calculate the density of the irregularly shaped object:
ρ=
![(m)/(V)=(0.0344kg)/(8.5x10^(-5) m^3) =404.706kg/m^3](https://img.qammunity.org/2020/formulas/physics/college/fr5x3svan0e3nr7dk4oikg7xcmgxktv68h.png)