(a) The sum of all the x displacements is
![20+bx-20-60=bx-60](https://img.qammunity.org/2020/formulas/mathematics/college/6766215nocvfqhqmjss2khoypcfjf6cgdc.png)
And we know that the final x position is -165. We deduce
![bx-60=-165 \iff bx = -165+60=-105](https://img.qammunity.org/2020/formulas/mathematics/college/zd3w5ncs0irfe7us84kcm4hpm1l8pcjuhq.png)
(b) Similarly, we sum all the y displacements and we impose them to be equal to the final displacement:
![60-70+cy-70=59 \iff cy = 59-60+70+70 = 139](https://img.qammunity.org/2020/formulas/mathematics/college/vbrgpl16g1fv1dsdjbru2tgndkg1mvag86.png)
(c) The magnitude of the overall displacement is given by
![M = √((-165)^2+(59)^2)=√(27225+3481)=√(30706)\approx 175.23](https://img.qammunity.org/2020/formulas/mathematics/college/h8k4oih6la2wawleu62y89p4mj6hox2xt4.png)
(d) The angle is given by
![\alpha = \arctan\left((59)/(-165)\right)+\pi \approx 2.8 \text{ radians}](https://img.qammunity.org/2020/formulas/mathematics/college/q2qjf3jminv279r14r6d0qsl0oavqvie0i.png)