Answer:
a.
![P(E_1/A)=0.0789](https://img.qammunity.org/2020/formulas/mathematics/high-school/3r1g3x654yfp931x9gxr99fsswhbhvphn8.png)
b.
\
c.
![P(E_3/A)=0.526](https://img.qammunity.org/2020/formulas/mathematics/high-school/fjjtwejtdng46mofb9smedm4rkocj68a0i.png)
Explanation:
Let
are the events that denotes the good drive, medium drive and poor risk driver.
![P(E_1)=0.30,P(E_2)=0.50,P(E_3)=0.20](https://img.qammunity.org/2020/formulas/mathematics/high-school/lbbhq69juydahp9o7foh8hd4wr0pgt71h4.png)
Let A be the event that denotes an accident.
![P(A/E_1)=0.01](https://img.qammunity.org/2020/formulas/mathematics/high-school/qkciw7rtpe98zmlg3k5rw2k2ubxndmh808.png)
![P(A/E_2=0.03](https://img.qammunity.org/2020/formulas/mathematics/high-school/qivigh43imdx8mhjynkjr3u9385s8dcbbo.png)
![P(A/E_3)=0.10](https://img.qammunity.org/2020/formulas/mathematics/high-school/lg8rav11g3bmfj6k0l4cwy05mu4u3pyszj.png)
The company sells Mr. Brophyan insurance policy and he has an accident.
a.We have to find the probability Mr.Brophy is a good driver
Bayes theorem,
![P(E_i/A)=(P(A/E_i)\cdot P(E_1))/(\sum_(i=1)^(i=n)P(A/E_i)\cdot P(E_i))](https://img.qammunity.org/2020/formulas/mathematics/high-school/hg0rf52ovr2ij80qfgpeyvv96d632y6v1e.png)
We have to find
![P(E_1/A)](https://img.qammunity.org/2020/formulas/mathematics/college/2l8tv2vhhxwg1993jufhsh3e3686vr7s5x.png)
Using the Bayes theorem
![P(E_1/A)=(P(A/E_1)\cdot P(E_1))/(P(E_1)\cdot P(A/E_1)+P(E_2)P(A/E_2)+P(E_3)P(A/E_3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/incgsxpzkmq1dis39cver6uw3w40ie5jcg.png)
Substitute the values then we get
![P(E_1/A)=(0.30* 0.01)/(0.01* 0.30+0.50* 0.03+0.20* 0.10)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vkm2vw84bhpou2fqssyjo9x4uuv8vacum1.png)
![P(E_1/A)=0.0789](https://img.qammunity.org/2020/formulas/mathematics/high-school/3r1g3x654yfp931x9gxr99fsswhbhvphn8.png)
b.We have to find the probability Mr.Brophy is a medium driver
![P(E_2/A)=(0.03* 0.50)/(0.038)=0.395](https://img.qammunity.org/2020/formulas/mathematics/high-school/4v482xbe6myb17kc7x7m8ddrccnnie2tsq.png)
c.We have to find the probability Mr.Brophy is a poor driver
![P(E_3/A)=(0.20* 0.10)/(0.038)=0.526](https://img.qammunity.org/2020/formulas/mathematics/high-school/2605i0odlshmwzjh8zqp5dwopm5d717ixx.png)