Answer:
P(X=0)=1x10^-5
P(X=1)=1.67x10^-3
P(X=2)=0.0766
P(X=3)=0.9217
Step-by-step explanation:
X="The number of components that meet specifications"
A="The 1st component meet the specification"
B="The 2nd component meet the specification"
C="The 3rd component meet the specification"
The events are independents
P(A)=0.95
P(B)=0.98
P(C)=0.99
P(X=0)=P(A'∩B'∩C')=P(A')P(B')P(C')=(1-P(A))(1-P(B))(1-P(C))=
(1-0.95)(1-0.98)(1-0.99)=0.05x0.02x0.01=1x10^-5
P(X=0)=1x10^-5
P(X=1)=P(A∩B'∩C')+P(A'∩B∩C')+P(A'∩B'∩C)
P(X=1)=P(A)P(B')P(C')+P(A')P(B)P(C')+P(A')P(B')P(C)
P(X=1)=P(A)(1-P(B))(1-P(C))+(1-P(A))P(B)(1-P(C))+(1-P(A))(1-P(B))P(C)
P(X=1)=(0.95)(1-0.98)(1-0.99)+(1-0.95)(0.98)(1-0.99)+(1-0.95)(1-0.98)(0.99) P(X=1)=1.67x10^-3
P(X=2)=P(A'∩B∩C)+P(A∩B'∩C)+P(A∩B∩C')
P(X=2)=P(A')P(B)P(C)+P(A)P(B')P(C)+P(A)P(B)P(C')
P(X=2)=(1-P(A))P(B)P(C))+P(A)(1-P(B))P(C)+P(A)P(B)(1-P(C))
P(X=2)=(0.05)(0.98)(0.99)+(0.95)(0.02)(0.99)+(0.95)(0.98)(0.01)
P(X=2)=0.0766
P(X=3)=P(A∩B∩C)=P(A)P(B)P(C)=P(A)P(B)P(C)= (0.95)(0.98)(0.99)=
P(X=3)=0.9217