215k views
1 vote
Please help ASAP!!

A ball is dropped from the top of a 46.0 m -high cliff. At the same time, a carefully aimed stone is thrown straight up from the bottom of the cliff with a speed of 22.0 m/s . The stone and ball collide part way up.
How far above the base of the cliff does this happen?

User Entalyan
by
4.9k points

1 Answer

2 votes

Answer:

at t=46/22, x=24 699/1210 ≈ 24.56m

Step-by-step explanation:

The general equation for location is:

x(t) = x₀ + v₀·t + 1/2 a·t²

Where:

x(t) is the location at time t. Let's say this is the height above the base of the cliff.

x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0

v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.

a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².

Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.

Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²

Stone: x(t) = 0 + 22·t - 1/2*9.8 t²

Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:

46 = 22·t

so t = 46/22 ≈ 2.09

Put this t back into either original (i.e., with the quadratic term) equation and get:

x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m

User Alexey Tseitlin
by
5.5k points