Answer:
Q2. (16,8)
Q3.
, ratio=5:1
Q4. Ratio=2:1
Q5. Ratio=1:1
Explanation:
Q2. Let (2a,a) be the coordinates of P.
Since P is equidistant from Q (2,-5) and R (-3, 6), we have
![|PQ|=|PR|](https://img.qammunity.org/2020/formulas/mathematics/middle-school/babw5kfdjw9uuws7wusjm6w0dnmasu2pjb.png)
This gives us:
![√((2a-2)^2+(a+5)^2)=√((2a+3)^2+(6-a)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5unc4iccdtxgefkom0n7wwom8go23cd7c9.png)
![\implies (2a-2)^2+(a+5)^2=(2a+3)^2+(6-a)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nc5qrm2gsa6muk4tqmecs431nhkjsfd0au.png)
Expand:
![4a^2-8a+4+a^2+10a+25=4a^2+12a+9+a^2 -12a+36](https://img.qammunity.org/2020/formulas/mathematics/middle-school/526oizwox1g88wo8giryphork0vg7mhh3r.png)
![2a=16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/udyzpm3w16szb346ig4bl2643kow17o4nj.png)
![a=8](https://img.qammunity.org/2020/formulas/mathematics/high-school/njxspwaptzga9wuxx7i1dikfq3uoc84qwn.png)
The coordinates of P are
![(16,8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kiph8ajsjxvg82zj357e4ntldd3tpl43f8.png)
Q.3 The equation of the line segment joining the points
A (5.-6) and B (-1,-4) is
.
The x-coordinate of the point that divides AB in the ratio m:n is
![x=(mx_2+nx_1)/(m+n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b1o924wwr88akg07jqljgq7fa8zrbxzqu3.png)
The y-axis meets this line at
![(0,-(13)/(3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/je6mzlbrwlobalzjxxiood4difyksaqe7r.png)
We substitute
into this equation and solve for m and n.
![0=(-m+5n)/(m+n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vpvi4nddu3ijmkp56sp9zqbw0wbunonb12.png)
![m=5n](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ni04y3airl9nat3p0tjhp66pn38l92dcec.png)
![(m)/(n)=(5)/(1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/btd9hfb0o34ndgqcuqh8af4bzoxsw77410.png)
Therefore the ratio is m:n=5:1
Q.4 The equation of the line segment joining
the points (-5,-4) and (-2,3) is
.
The point (-3, k) must satisfy this line because it lies on it.
.
![\implies k=(2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rw2tp3dwzz4br5md8fpul0t5kh5glpui9j.png)
We again use the equation
to find the given ratio.
Substitute:
![x_2=-2,x_1=-5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tp6k5bmgs0p0iae5zxbyfwiy3n8853xu1n.png)
![4=(-2m+-5n)/(m+n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/frtjqn6ui1znnb10bjztjlg7oect2ze2dc.png)
![\implies m=2n](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mx64be5joxz43cfkqsjoe1sow0k01spi6a.png)
![(m)/(n)= (2)/(1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fi7byw2667sgr8vgb9as6ri40cs6dvno7m.png)
The ratio is m:n=2:1
Q. 5 The equation of the line joining A (2,3) and B(6,-3) is
.
We substitute (4,m) to get:
12+4m=12
4m=0
m=0
It is obvious that: (4,0) is the midpoint of A(2,3) and B(6,-3).
Hence the ratio is 1:1