57.5k views
5 votes
Solve for y where y(2)=2 and y'(2)=0 by representing y as a power series centered at x=a

y + (x - 2)y+y=0

1 Answer

6 votes

I'll assume the ODE is actually


y''+(x-2)y'+y=0

Look for a series solution centered at
x=2, with


y=\displaystyle\sum_(n\ge0)c_n(x-2)^n


\implies y'=\displaystyle\sum_(n\ge0)(n+1)c_(n+1)(x-2)^n


\implies y''=\displaystyle\sum_(n\ge0)(n+2)(n+1)c_(n+2)(x-2)^n

with
c_0=y(2)=2 and
c_1=y'(2)=0.

Substituting the series into the ODE gives


\displaystyle\sum_(n\ge0)(n+2)(n+1)c_(n+2)(x-2)^n+\sum_(n\ge0)(n+1)c_(n+1)(x-2)^(n+1)+\sum_(n\ge0)c_n(x-2)^n=0


\displaystyle\sum_(n\ge0)(n+2)(n+1)c_(n+2)(x-2)^n+\sum_(n\ge1)nc_n(x-2)^n+\sum_(n\ge0)c_n(x-2)^n=0


\displaystyle2c_2+c_0+\sum_(n\ge1)(n+2)(n+1)c_(n+2)(x-2)^n+\sum_(n\ge1)nc_n(x-2)^n+\sum_(n\ge1)c_n(x-2)^n=0


\displaystyle2c_2+c_0+\sum_(n\ge1)\bigg((n+2)(n+1)c_(n+2)+(n+1)c_n\bigg)(x-2)^n=0


\implies\begin{cases}c_0=2\\c_1=0\\(n+2)c_(n+2)+c_n=0&\text{for }n>0\end{cases}

  • If
    n=2k for integers
    k\ge0, then


k=0\implies n=0\implies c_0=c_0


k=1\implies n=2\implies c_2=-\frac{c_0}2=(-1)^1(c_0)/(2^1(1))


k=2\implies n=4\implies c_4=-\frac{c_2}4=(-1)^2(c_0)/(2^2(2\cdot1))


k=3\implies n=6\implies c_6=-\frac{c_4}6=(-1)^3(c_0)/(2^3(3\cdot2\cdot1))

and so on, with


c_(2k)=(-1)^k(c_0)/(2^kk!)

  • If
    n=2k+1, we have
    c_(2k+1)=0 for all
    k\ge0 because
    c_1=0 causes every odd-indexed coefficient to vanish.

So we have


y(x)=\displaystyle\sum_(k\ge0)c_(2k)(x-2)^(2k)=\sum_(k\ge0)(-1)^k((x-2)^(2k))/(2^(k-1)k!)

Recall that


e^x=\displaystyle\sum_(n\ge0)(x^k)/(k!)

The solution we found can then be written as


y(x)=\displaystyle2\sum_(k\ge0)\frac1{k!}\left(-\frac{(x-2)^2}2\right)^k


\implies\boxed{y(x)=2e^(-(x-2)^2/2)}

User Gerson Malca Bazan
by
6.5k points