Answer:
![W=\{\left[\begin{array}{ccc}a+2b\\b\\-3a\end{array}\right]: a,b\in\mathbb{R} \}](https://img.qammunity.org/2020/formulas/mathematics/college/on4fnxq9rnwwnjujck4yh6bm46ddzynzw6.png)
Observe that if the vector
is in W then it satisfies:
![\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{c}a+2b\\b\\-3a\end{array}\right]=a\left[\begin{array}{c}1\\0\\-3\end{array}\right]+b\left[\begin{array}{c}2\\1\\0\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/fc6w6ktxqikk8l86bpzewk2sdrsi56x3pe.png)
This means that each vector in W can be expressed as a linear combination of the vectors
![\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}2\\1\\0\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/m1ldtwhvta86lpitj3hbgaqy1kob7x7a7t.png)
Also we can see that those vectors are linear independent. Then the set
is a basis for W and the dimension of W is 2.