Step-by-step explanation:
Given that,
Radius R= 35 mm
Current = 3.5 A
The magnetic field B is proportional to the r.
Magnetic field is maximum ,when r = R
(a). We need to calculate the radius inside the capacitor
![(0.80B_(max))/(B_(max))=(r_(1))/(R)](https://img.qammunity.org/2020/formulas/physics/college/v5haenehxav5cqcf7vubug6rcu9kfszue5.png)
![r_(1)=0.80 R](https://img.qammunity.org/2020/formulas/physics/college/57mvjywzigqwlulmewnzi637t4pqra9y1j.png)
![r_(1)=0.80*35*10^(-3)](https://img.qammunity.org/2020/formulas/physics/college/prnn73fbtsy9z07dntn6e95texv8vzfz22.png)
![r_(1)=0.028\ m](https://img.qammunity.org/2020/formulas/physics/college/nviuq9l91f3gylcbsp2dhbclyuvp53q8jk.png)
![r_(1)=28\ mm](https://img.qammunity.org/2020/formulas/physics/college/20g7afzimzvb1n0c9m3gpcdmqn8aomidlu.png)
The radius inside the capacitor is 28 mm.
(b). We need to calculate the radius outside the capacitor
![(0.80B_(max))/(B_(max))=((r_2)/(R))^(-1)](https://img.qammunity.org/2020/formulas/physics/college/hkgvtsgojaoujdog2pw4171h84jhtpcnna.png)
![r_(2)=43.75\ mm](https://img.qammunity.org/2020/formulas/physics/college/m29bbny583y5xdqu367m13iffyz92kzkml.png)
The radius outside the capacitor is 43.75 mm.
(c). We need to calculate the maximum value
Using formula of magnetic field
![B=(\mu_(0)I)/(2\pi R)](https://img.qammunity.org/2020/formulas/physics/college/sci0fc8uswjviblw9ksxs114z3a5kjci1n.png)
Put the value into the formula
![B=(4\pi*10^(-7)*3.5)/(2*3.14*35*10^(-3))](https://img.qammunity.org/2020/formulas/physics/college/nkotd410tleqly3pfq03kaa9s598x3oh93.png)
![B=2.00*10^(-5)\ T](https://img.qammunity.org/2020/formulas/physics/college/koulwnd06n82b1gphw3fqrsn4z3ro789px.png)
The maximum value of magnetic field is
.
Hence, This is the required solution.