Answer:
Possible values for r are 0.4 and 0.6.
Explanation:
The sum to infinity of a GS is a1 / (1 - r) where a1 is the first term and r is the common difference.
The second term = a1*r = 7.98
so a1 = 7.98 / r.
Substituting in the formula for the sum to infinity:
33 .25 = (7.98 / r) / (1 - r).
33.25 = 7.98 / r(1 - r)
33.25 = 7.98 / r - r^2
33.25r - 33.25r^2 = 7.98
33.25r^2 - 33.25r + 7.98 = 0
r = [ -(-33.25) +/- √(-33.25)^2 - 4 * 33.25 * 7.98)] / (2 * 33.25)
this gives r = 0.4, 0.6.
Check back in the formula for the infinite sum:
Let r = 0.4:
Then a1 =7.98 / 0.4 = 19.95
so sum = 19.95 / (1 - 0.4) = 33.25
Ler r = 0.6 then a1 = 7.98 / 0.6 = 13.3
and the sum = 13.3 / 1 - 0.6 = 33.35.
This confirms our values of r.