Answer:
The ball's position can get of the initial angle when leave the bat and velocity magnitud.
θ = 35,1
v = 36,5
Step-by-step explanation:
θf= 29
h= 9,5 m
vf= 30,15
![(m)/(s)](https://img.qammunity.org/2020/formulas/physics/middle-school/5mfyjokzpoi5z4ddarj96ajjnw86dluvzn.png)
![V_(ox) = V_(f) * cos (θ)](https://img.qammunity.org/2020/formulas/physics/high-school/j0go2kkpjhjt5m3i7d5buokkddorx22t1m.png)
![V_(ox) = 30, 15 * cos ( 29 )](https://img.qammunity.org/2020/formulas/physics/high-school/to8i252zoer2sj41j0vh1d0rrst0lg02b3.png)
![V_(ox) = 26,36 (m)/(s)](https://img.qammunity.org/2020/formulas/physics/high-school/eaxdyf3ubxf16i27eubpj4dnl4szfk34r8.png)
Now as you know the vector in 'y' can be related with Tan function
![Tan (θ) = (V_(y) )/(V_(ox) )](https://img.qammunity.org/2020/formulas/physics/high-school/hv47sybd0q6ky7qj9pj9fmow9pm35672hw.png)
![V_(y) = Tan (29) * 26,36 (m)/(s)](https://img.qammunity.org/2020/formulas/physics/high-school/rz83ifmwxoigtv2cy9anm2j9v4ar049mot.png)
![V_(y) = 14,617 (m)/(s)](https://img.qammunity.org/2020/formulas/physics/high-school/28u0y302nddmng2hlcavgk620ma6q4ywf2.png)
So, the initial velocity in 'y' can be resolved:
![V_(oy) ^(2)= V_(y) ^(2) + 2* a * h](https://img.qammunity.org/2020/formulas/physics/high-school/hys8wm8fr4ksdkawnrr6g1ik9jh0aqotro.png)
![V_(y) ^(2) = 14,617^(2) +2 * 9,8 (m)/(s^(2)) *9,5 m](https://img.qammunity.org/2020/formulas/physics/high-school/qph9ua47s24do8w6ernwbkt6jyq4jj0lga.png)
![V_(oy) = √(399,8569828)](https://img.qammunity.org/2020/formulas/physics/high-school/nc3p671or3ergeamldwpealysz1rpvp4z0.png)
![V_(oy) =19,99642525 (m)/(s)](https://img.qammunity.org/2020/formulas/physics/high-school/4ngye7e2epx1ib4t795vxthrin3oap2386.png)
Finally the velocity is going to be:
![V= \sqrt{V_(ox) ^(2) +V_(oy) ^(2) }](https://img.qammunity.org/2020/formulas/physics/high-school/6xrue1yu6e5tyfyjq0b59yp6ja7z0i0f01.png)
![V= \sqrt{26,36 ^(2) +19,99 ^(2) }](https://img.qammunity.org/2020/formulas/physics/high-school/gvrwpk52ehu7w6td88xdmogua0604tajgd.png)
![V= 33,08 (m)/(s)](https://img.qammunity.org/2020/formulas/physics/high-school/sxkz2dk4grfqimkew6nffmq92lbtji9cck.png)
θ
![= Tan^(-1) ((19,99)/(26,36))](https://img.qammunity.org/2020/formulas/physics/high-school/steyzrenu4ryywzme78wn2boe24dxnol1c.png)
θ
![=37,188](https://img.qammunity.org/2020/formulas/physics/high-school/q04396a77uiqfgybrw050ckam273jy5nzt.png)