Answer:
![E=(Q+2A\pi(r^2-a^2))/(4\pi r^2\epsilon_0)=k, A=((k4\pir^2\epsilon _0-Q))/(2\pi(r^2-a^2))](https://img.qammunity.org/2020/formulas/physics/college/jc2f8s06oaiwel2726rjg1hkfzvnaqp5em.png)
Step-by-step explanation:
I will use the Gauss's Law to find the field:
}
the surface S is a sphere of radio r, the normal vector only has radial coordinates.
E(r)=E(r)r /*The field, based on spherical symmetry, only depends of the radius, and only has radial coordinate*/
if r<a
![\int\vec{E}.d\vec{S}=\int EdS=E\int dS=4\pi r^2E=(Q_(in))/(\epsilon_0)](https://img.qammunity.org/2020/formulas/physics/college/i2azlbb6ag0eaf3ryxefzv853tw5qdq8tu.png)
![\vec{E}=(Q)/(4\pi r^2\epsilon_0). \^r](https://img.qammunity.org/2020/formulas/physics/college/h6a0ql8ea313i7uxqi7aw5rezxg15oqrhr.png)
if a=<r<b
![\int\vec{E}.d\vec{S}=\int EdS=E\int dS=4\pi r^2E=(Q_(in))/(\epsilon_0)](https://img.qammunity.org/2020/formulas/physics/college/i2azlbb6ag0eaf3ryxefzv853tw5qdq8tu.png)
![Q_(in)=Q+\int dq', \rho=(dq')/(dVol), Q_(in)=Q+\int\rho dVol=Q+\int\limits^(2\pi)_0\int\limits^(\pi)_0\int\limits^r_a {(A)/(r)} \, r^2sin(\phi)dr d \phi d \theta](https://img.qammunity.org/2020/formulas/physics/college/fwixmeub6pbrx4t0viur7lqqsqgxd6cr5j.png)
![E=(Q+2A\pi(r^2-a^2))/(4\pi r^2\epsilon_0)=k, A=((k4\pir^2\epsilon _0-Q))/(2\pi(r^2-a^2))](https://img.qammunity.org/2020/formulas/physics/college/jc2f8s06oaiwel2726rjg1hkfzvnaqp5em.png)
with K=constant