Answer:
a)
![v_(1)=((62.5-66)ft)/((2.5-2)s)=-7ft/s](https://img.qammunity.org/2020/formulas/physics/high-school/ky8saxd69vl121iqzg9eiv0u9zq919u2mg.png)
![v_(2)=((65.94-66)ft)/((2.1-2)s)=-0.6ft/s](https://img.qammunity.org/2020/formulas/physics/high-school/k5v04xznsfw0b8t3ijh5wv757fj2sfpboy.png)
![v_(3)=((66.0084-66)ft)/((2.01-2)s)=0.84ft/s](https://img.qammunity.org/2020/formulas/physics/high-school/35q7zbap50ai9iablwsdf4nexy3plp85rn.png)
![v_(4)=((66.001-66)ft)/((2.001-2)s)=1ft/s](https://img.qammunity.org/2020/formulas/physics/high-school/rxcr25yrxn250dzeu7vlu3mhadknblwm10.png)
b)
![v=65-32(2)=1ft/s](https://img.qammunity.org/2020/formulas/physics/high-school/962qgkg5l7in6h64gsg4udsem5jqygc0x4.png)
Step-by-step explanation:
From the exercise we got the ball's equation of position:
![y=65t-16t^(2)](https://img.qammunity.org/2020/formulas/physics/high-school/3cmrtxvsnbwmyy904yrfle7xy3m7xzql4j.png)
a) To find the average velocity at the given time we need to use the following formula:
![v=(y_(2)-y_(1) )/(t_(2)-t_(1) )](https://img.qammunity.org/2020/formulas/physics/high-school/5gnlezmtextlawbt9mfbcs2hzj4j11tmnx.png)
Being said that, we need to find the ball's position at t=2, t=2.5, t=2.1, t=2.01, t=2.001
![y_(t=2)=65(2)-16(2)^(2) =66ft](https://img.qammunity.org/2020/formulas/physics/high-school/980pyx67dwu4np22qrqcq2gtf4a62qjoqa.png)
![y_(t=2.5)=65(2.5)-16(2.5)^(2) =62.5ft](https://img.qammunity.org/2020/formulas/physics/high-school/6rjkxrkq6ikbqzosm3g5q2nq47er28rxet.png)
![v_(1)=((62.5-66)ft)/((2.5-2)s)=-7ft/s](https://img.qammunity.org/2020/formulas/physics/high-school/ky8saxd69vl121iqzg9eiv0u9zq919u2mg.png)
--
![y_(t=2.1)=65(2.1)-16(2.1)^(2) =65.94ft](https://img.qammunity.org/2020/formulas/physics/high-school/guflgwrj94gfmluo9auxzf9s1ozspawqgb.png)
![v_(2)=((65.94-66)ft)/((2.1-2)s)=-0.6ft/s](https://img.qammunity.org/2020/formulas/physics/high-school/k5v04xznsfw0b8t3ijh5wv757fj2sfpboy.png)
--
![y_(t=2.01)=65(2.01)-16(2.01)^(2) =66.0084ft](https://img.qammunity.org/2020/formulas/physics/high-school/zotryqx6n6dftxpkpx122rzpuhfbi1kqts.png)
![v_(3)=((66.0084-66)ft)/((2.01-2)s)=0.84ft/s](https://img.qammunity.org/2020/formulas/physics/high-school/35q7zbap50ai9iablwsdf4nexy3plp85rn.png)
--
![y_(t=2.001)=65(2.001)-16(2.001)^(2) =66.001ft](https://img.qammunity.org/2020/formulas/physics/high-school/92i2ewmu3tmai2l1u5zwr5nfx0mkcq29we.png)
![v_(4)=((66.001-66)ft)/((2.001-2)s)=1ft/s](https://img.qammunity.org/2020/formulas/physics/high-school/rxcr25yrxn250dzeu7vlu3mhadknblwm10.png)
b) To find the instantaneous velocity we need to derivate the equation
![v=(df)/(dt)=65-32t](https://img.qammunity.org/2020/formulas/physics/high-school/n7bqs362xe6jfngrm36tvrfwtan77dn1d0.png)
![v=65-32(2)=1ft/s](https://img.qammunity.org/2020/formulas/physics/high-school/962qgkg5l7in6h64gsg4udsem5jqygc0x4.png)