Answer:
![(7.321\ , \ 7.599)](https://img.qammunity.org/2020/formulas/mathematics/college/vw7q7e2bfn1yox2jpmzjgdnow55369scnl.png)
Explanation:
Given : Sample size : n= 400 () large sample
Significance level :
![\alpha: 1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/high-school/9x6075632zgcvqcj0z3yy9jc9lp14p66n9.png)
By using Standard normal table , Critical value :
![z_(\alpha/2)=1.96](https://img.qammunity.org/2020/formulas/mathematics/high-school/fn1e1isyr7r4ubq2yxfnpgs4mo3eo8m7ik.png)
Sample mean :
![\overline{x}= 7.46](https://img.qammunity.org/2020/formulas/mathematics/college/9ce9nm8kai6l0vvg9ku8l66r3v2tyqk4y5.png)
Standard deviation:
![\sigma=1.42](https://img.qammunity.org/2020/formulas/mathematics/college/y9z57y2pn6tb5f6hwzdmjtc36u1zmb0twk.png)
The confidence interval for population means is given by :-
![\overline{x}\pm z_(\alpha/2)(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/physics/high-school/8ob9lxp74mdevwdfxubejzkzkpzvqay12m.png)
![=7.46\pm(1.96)(1.42)/(√(400))](https://img.qammunity.org/2020/formulas/mathematics/college/6llvnzozu0p5g1h3vs4mki3063d53375j9.png)
![\approx 7.46\pm0.139=( 7.46-0.139,\ 7.46+0.139)\\\\=(7.321\ , \ 7.599)](https://img.qammunity.org/2020/formulas/mathematics/college/9p5wxm4x30q84wvnxpc1cbme1k5x77d468.png)
Hence, the 95 percent confidence interval for the mean percentage share of billing volume from network television for the population of all U.S. advertising agencies =
![(7.321\ , \ 7.599)](https://img.qammunity.org/2020/formulas/mathematics/college/vw7q7e2bfn1yox2jpmzjgdnow55369scnl.png)