Answer:
and
![x_2=-4.269](https://img.qammunity.org/2020/formulas/mathematics/college/h0oioq4rikm75wb3xazv2cj3z4qm5wchdb.png)
Explanation:
Given :
![9x_1 + 7x_2 \geq 57](https://img.qammunity.org/2020/formulas/mathematics/college/iyg665tg2cea8ikqa3quxh4d3jtyyemqik.png)
![4x_1 + 6x_2\geq 13](https://img.qammunity.org/2020/formulas/mathematics/college/qphg36iclanjinjhwpwzgk5fqld7dwt0ko.png)
To Find : Find the values of
and
where the following two constraints intersect.
Solution:
![9x_1 + 7x_2 \geq 57](https://img.qammunity.org/2020/formulas/mathematics/college/iyg665tg2cea8ikqa3quxh4d3jtyyemqik.png)
![4x_1 + 6x_2\geq 13](https://img.qammunity.org/2020/formulas/mathematics/college/qphg36iclanjinjhwpwzgk5fqld7dwt0ko.png)
Plot these constraints on the graph
--- Red
--- Blue
The intersection point will provide the solution
So, Intersection point = (9.654,-4.269)
So,
and
![x_2=-4.269](https://img.qammunity.org/2020/formulas/mathematics/college/h0oioq4rikm75wb3xazv2cj3z4qm5wchdb.png)
Refer the attached figure .