Answer:
Part 1) Projection of A along B is 19 units
Part 2) Projection of B' along A' is 35 units.
Explanation:
The projection of any vector A on another vector B is given by the dot product between the two vectors
Given vector A
![\overrightarrow{v_A}=a\widehat{i}+b\widehat{j}+c\widehat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/xr3q8kahe30sk8246vmkl6bz35gydyq4qa.png)
And Vector B
![\overrightarrow{v_B}=l\widehat{i}+m\widehat{j}+n\widehat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/knnmcnd1u4jqk2rx71v0fajioehwc0u144.png)
The dot product between them is given by
![\overrightarrow{v_A}\cdot \overrightarrow{v_B}=al+bm+cn](https://img.qammunity.org/2020/formulas/mathematics/college/76v7cas1om4v9ysw591j8hbjork4ybhot6.png)
Comparing with the given vectors we have
for vector A
a = 1 ,b = -2, c =1
For vector B
l = 4, m = -4, n = 7
Thus the projection of A along B is
![\overrightarrow{v_A}\cdot \overrightarrow{v_B}=4+8+7=19](https://img.qammunity.org/2020/formulas/mathematics/college/rzl1egdz6r2nl0g8lxz6rh9jdqslngccs4.png)
Part b)
For the second case
![\overrightarrow{v_A}=2\widehat{i}+3\widehat{j}+6\widehat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/7rj7eaoeuotk23ktj4w8yj32famsnchoxp.png)
and
![\overrightarrow{v_B}=1\widehat{i}+5\widehat{j}+3\widehat{k}](https://img.qammunity.org/2020/formulas/mathematics/college/ow25t0ippmwj7p8g9l409g2ugfhe828fw6.png)
Thus the projection of B along A is
![\overrightarrow{v_B}\cdot \overrightarrow{v_A}=2+15+18=35](https://img.qammunity.org/2020/formulas/mathematics/college/yh6b4fop3zh82vvdaku53qblml8n85refj.png)