177k views
5 votes
Show that the sum of two concave functions is concave. Is the product of two concave functions also concave?

User Frastel
by
7.6k points

1 Answer

5 votes

Answer:

1.

Let f and g concave functions. Then for a in (0,1),
f( (1-\lambda)x + \lambda y ) \geq (1-\lambda)f(x) + \lambda f(y) and
g( (1-\lambda)x + \lambda y ) \geq (1-\lambda)g(x) + \lambda g(y)

Now,
(f+g)( (1-\lambda)x + \lambda y ) = f( (1-\lambda)x + \lambda y ) + g( (1-\lambda)x + \lambda y )\geq (1-\lambda)f(x) + \lambda f(y) + (1-\lambda)g(x) + \lambda g(y) = (1-\lambda)(f(x)+g(x)) + \lambda (f(x)+g(x))= (1-\lambda)(f+g)(x) + \lambda(f+g)(x)

This shows that the function f+g is concave.

2. Let f and g concave functions.


(fg)( (1-a)x + \lambda y )= f( (1-\lambda)x + \lambda y )g( (1-\lambda)x + \lambda y )  \geq [(1-a)f(x) + \lambda f(y)] [(1-\lambda)g(x) + \lambda g(y)] = (1-\lambda)^2 f(x)g(x) + \lambda (1-\lambda) f(x)g(y)+ \lambda (1-\lambda) f(y)g(x)+ \lambda ^2 f(y)g(y) \\eq (1-\lambda)f(x)g(x) + \lambda f(y)g(y)

This shows that the product of two concave functions isn't concave.

User Boneill
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories